Advertisement

Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds

  • Mayara B. Ogaki
  • Lívia C. Coelho
  • Rosemary Vieira
  • Arthur A. Neto
  • Carlos L. Zani
  • Tânia M. A. Alves
  • Policarpo A. S. Junior
  • Silvane M. F. Murta
  • Emerson C. Barbosa
  • Jaquelline G. Oliveira
  • Isabela P. Ceravolo
  • Patrícia O. Pereira
  • Betania B. Cota
  • Roberta O. Viana
  • Viviane S. Alves
  • Luiz H. RosaEmail author
Original Paper

Abstract

We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum, Penicillium palitans, Penicillium solitum, and Pseudogymnoascus verrucosus were identified. Penicillium allii-sativi was the dominant species. At least one isolate of each species was capable to present antifungal, trypanocidal, leishmanicidal, antimalarial, nematocidal, or herbicidal activities. Penicillium produced extracts with strong trypanocidal and antimalarial activities, and the extracts of P. solitum and P. chrysogenum demonstrated strong antimalarial activities. Acremonium fusidioides and P. verrucosus displayed strong selective herbicidal properties. The 1H NMR signals for extracts of A. fusidioides, P. chrysogenum, and P. solitum indicated the presence of highly functionalized secondary metabolites, which may be responsible for the biological activities detected. In the deep marine Antarctic sediments, we detected fungal assemblages in which the Penicillium species were found to be dominant and demonstrated capabilities to survive and/or colonise that poly-extreme habitat. Penicillium being a polyextremophile Antarctic species, exhibited strong biological activities and the presence of aromatic compounds in its extracts may indicate that they are wild ancient strains with high genetic and biochemical potentials that enable them to produce bioactive compounds which can be researched in further studies and used in the chemotherapy of neglected tropical diseases as well as in agriculture.

Keywords

Antarctica Bioprospecting Marine fungi Marine sediments 

Notes

Acknowledgements

We acknowledge the financial support from CNPq PROANTAR 442258/2018-6, INCT Criosfera II, CNPq, FAPEMIG, and FNDCT. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. We are thankful to the Laboratório de Ressonância Magnética Nuclear de Alta Resolução (LAREMAR/UFMG) and IS Lula for the NMR experiments. The authors thank the Program for Technological Development of Tools for Health-PDTIS-Fiocruz for use of its facilities (Bioprospection and Chagas disease-PlaBio Tc platforms). PASJ is research fellow supported by Programa de Pós-graduação em Ciências da Saúde, Fiocruz Minas (CAPES/PNPD).

Supplementary material

792_2019_1148_MOESM1_ESM.docx (168 kb)
Supplementary file1 (DOCX 167 kb)
792_2019_1148_MOESM2_ESM.docx (1.5 mb)
Supplementary file2 (DOCX 1544 kb)
792_2019_1148_MOESM3_ESM.docx (14 kb)
Supplementary file3 (DOCX 13 kb)
792_2019_1148_MOESM4_ESM.docx (19 kb)
Supplementary file4 (DOCX 18 kb)

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedPubMedCentralCrossRefGoogle Scholar
  2. Antipova TV, Zhelifonova VP, Baskunov BP, Kochkina GA, Ozerskaya SM, Kozlovskii AG (2018) Exometabolites the Penicillium fungi isolated from various high-latitude ecosystems. Microbiology 87:642–651CrossRefGoogle Scholar
  3. Bézivin C, Tomasi S, Lohézic-Le Dévéhat F, Boustie J (2003) Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine 10:499–503PubMedCrossRefGoogle Scholar
  4. Blanchflower SE, Banks RM, Evertt JR, Manger BR, Reading C (1991) New paraherquamide antibiotics with anthelmintic activity. J Antibiot 44:492–497PubMedCrossRefGoogle Scholar
  5. Blanchflower SE, Banks RM, Everett JR, Reading C (1993) Further novel metabolites of the paraherquamide family. J Antibiot 46:1355–1363PubMedCrossRefGoogle Scholar
  6. Borenfreund E, Babich H, Martin-Alguacil N (1988) Comparisons of two in vitro cytotoxicity assays: the neutral red, NR and tetrazolium MTT tests. Toxicol In Vitro 2:1–6PubMedCrossRefGoogle Scholar
  7. Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E et al (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genom 2:43–50CrossRefGoogle Scholar
  8. Burgaud G, Calvez TL, Arzur D, Vandenkoornhuyse P, Barbier G (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol 11:1588–1600PubMedCrossRefGoogle Scholar
  9. Burgaud G, Hué NT, Arzur D, Coton M, Perrier-Cornet JM, Jebbar M, Barbier G (2015) Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol 166:700–709PubMedCrossRefGoogle Scholar
  10. Callahan HL, Portal AC, Devereaux R, Grogl M (1997) An axenic amastigote system for drug screening. Antimicrob Agents Chemother 41:818–822PubMedPubMedCentralCrossRefGoogle Scholar
  11. Damare S, Raghukumar C (2008) Fungi and macroaggregation in deep-sea sediments. Microb Ecol 53:14–27Google Scholar
  12. Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of 563 the Central Indian Basin. Deep Sea Res Part I Oceanogr Res Pap 53:14–27CrossRefGoogle Scholar
  13. Dayan FE, Romagni JG, Duke SO (2000) Investigating the mode of action of natural phytotoxins. J Chem Ecol 26:2079–2094CrossRefGoogle Scholar
  14. de Hoog S, Guarro J, Gene J, Figueras MJ (2001) Atlas of clinical fungi, 2nd edn. ASM Press, Washington, DCGoogle Scholar
  15. do Céu de Madureira M, Martins AP, Gomes M, Paiva J, Da Cunha AP, Do Rosário V (2002) Antimalarial activity of medicinal plants used in traditional medicine in S Tomé and Príncipe islands. J Ethnopharmacol 81:23–29PubMedCrossRefGoogle Scholar
  16. Duarte AW, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LC, Pessoa A, Felipe MG, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035PubMedCrossRefGoogle Scholar
  17. Duarte AW, Lopes A, Molino J, Pessoa A, Sette L (2015) Liquid–liquid extraction of lipase produced by psychrotrophic yeast Leucosporidium scottii L117 using aqueous two-phase systems. Separ Purif Technol 156:1–11CrossRefGoogle Scholar
  18. Figueroa L, Jiménez C, Rodríguez J, Areche C, Chávez R, Henríquez M et al (2015) 3-Nitroasterric acid derivatives from an Antarctic sponge-derived Pseudogymnoascus sp. fungus. J Nat Prod 78:919–923PubMedCrossRefGoogle Scholar
  19. Fincher RM, Fisher JF, Lovell RD, Newman CL, Espinel-Ingroff A, Shadomy HJ (1991) Infection due to the fungus Acremonium (Cephalosporium). Medicine (Baltimore) 70:398–409CrossRefGoogle Scholar
  20. Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TMA, Zani CL et al (2014) Diversity patterns ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67:775–787PubMedCrossRefGoogle Scholar
  21. Giudice AL, Azzaro M (2019) Diversity and ecological roles of prokaryotes in the changing antarctic marine environment. In: Castro S (ed) The ecological role of microorganisms in the Antarctic environment, 1st edn. Springer, Cham, pp 109–131CrossRefGoogle Scholar
  22. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  23. Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D et al (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451PubMedPubMedCentralCrossRefGoogle Scholar
  24. Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer CE et al (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596PubMedCrossRefGoogle Scholar
  25. Gomes ECQ, Godinho VM, Silva DAS, De Paula MTR, Vitoreli GA, Zani CL et al (2018) Cultivable fungi present in Antarctic soils: taxonomy phylogeny diversity and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles 22:381–393PubMedCrossRefGoogle Scholar
  26. Gonçalves VN, Campos L, Melo IS, Pellizari VH, Rosa CA, Rosa LH (2013) Penicillium solitum: a mesophilic psychrotolerant fungus present in marine sediments from Antarctica. Polar Biol 36:1823–1831CrossRefGoogle Scholar
  27. Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TMA, Zani CL et al (2015) Antibacterial antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152CrossRefGoogle Scholar
  28. Gonçalves VN, Oliveira FS, Carvalho C, Schaefer CEG, Rosa CA, Rosa LH (2017) Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi. Extremophiles 21:851–860PubMedCrossRefGoogle Scholar
  29. Hatai K (2012) Diseases of fish and shellfish caused by marine fungi. In: Raghukumar C (ed) Biology of marine fungi progress in molecular and subcellular biology. Springer, Berlin, pp 15–51Google Scholar
  30. Holden-Dye L, Walker R (2014) Anthelmintic drugs and nematicides: studies in Caenorhabditis elegans. WormBook 16:1–29CrossRefGoogle Scholar
  31. Houbraken J, Frisvad JC, Seifert KA, Overy DP, Tuthill DM, Valdez JG et al (2012) New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29:78–100PubMedPubMedCentralCrossRefGoogle Scholar
  32. Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412PubMedCrossRefGoogle Scholar
  33. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi. CAB International, WallingfordGoogle Scholar
  34. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academy Press, New YorkGoogle Scholar
  35. Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762PubMedCrossRefGoogle Scholar
  36. Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421PubMedPubMedCentralCrossRefGoogle Scholar
  37. Li G, Zhang K, Xu J, Dong J, Liu Y (2007) Nematicidal substances from fungi. Recent Pat Biotechnol 1:212–233PubMedCrossRefGoogle Scholar
  38. Li Y, Sun B, Liu S, Jiang L, Liu X, Zhang H et al (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J Nat Prod 71:1643–1646PubMedCrossRefPubMedCentralGoogle Scholar
  39. López-Garcia P, Rodriguez-Valera F, Pedros-Allo C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607PubMedCrossRefPubMedCentralGoogle Scholar
  40. Mitchell DH, Stiles JW, Santelli J, Sanadi DR (1979) Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J Gerontol 34:28–36PubMedCrossRefPubMedCentralGoogle Scholar
  41. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  42. Muhammed M, Fuchs BB, Wu MP, Breger J, Coleman JJ, Mylonakis E (2012) The role of mycelium production and a MAPK-mediated immune response in the C. elegansFusarium model system. Med Mycol 50:488–496PubMedPubMedCentralCrossRefGoogle Scholar
  43. Nagahama T, Nagano Y (2012) Cultured and uncultured fungal diversity in deep-sea environments. In: Raghukumar C (ed) Biology of marine fungi progress in molecular and subcellular biology, vol 53. Springer, Berlin, pp 173–187Google Scholar
  44. Nagano Y, Nagahama T, Hatada Y, Nunoura T, Takami H, Miyazaki J et al (2010) Fungal diversity in deep-sea sediments—the presence of novel fungal groups. Fungal Ecol 3:316–325CrossRefGoogle Scholar
  45. Nascimento TCES, Sena AR, Gomes JEG, Santos WL, Montalvo GSA, Medeiros EV et al (2015) Extracellular serine proteases by Acremonium sp. L1–4B isolated from Antarctica: overproduction using cactus pear extract with response surface methodology. Biocatal Agric Biotechnol 4:737–744CrossRefGoogle Scholar
  46. NCCLS (2002) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard, M38-A. Natl Comm Clin Lab Stand 22:16Google Scholar
  47. Oduola AM, Weatherly NF, Bowdre JH, Desjardins RE (1988) Plasmodium falciparum: cloning by single-erythrocyte micromanipulation and heterogeneity in vitro. Exp Parasitol 66:86–95PubMedCrossRefGoogle Scholar
  48. Ondeyka JG, Goegelman RT, Schaeffer JM, Kelemen L, Zitano L (1990) Novel antinematodal and antiparasitic agents from Penicillium charlesii I fermentation, isolation and biological activity. J Antibiot 38:1375–1379CrossRefGoogle Scholar
  49. Pang K, Overy DV, Jones DVG, Calado ML, Burgaud G, Walker AK, Johnson JA, Kerr RG, Cha HJ, Bills GF (2016) ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: Toward a new consensual definition. Fungal Biol Rev 30:163–175CrossRefGoogle Scholar
  50. Porta-de-la-Riva M, Fontrodona L, Villanueva A, Cerón J (2012) Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp 10:e4019Google Scholar
  51. Raghukumar C, Damare SR, Singh P (2010) A review on deep-sea fungi occurrence, diversity and adaptations. Bot Mar 53:479–492CrossRefGoogle Scholar
  52. Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28:290–344PubMedCrossRefGoogle Scholar
  53. Redou V, Navarri M, Meslet-Cladière L, Barbier G, Burgaud G (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl Environ Microbiol 81:3571–3583PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ren J, Yang Y, Liu D, Chen W, Proksch P, Bm S et al (2013) Sequential determination of new peptaibols asperelines G-Z12 produced by marine-derived fungus Trichoderma asperellum using ultrahigh pressure liquid chromatography combined with electrospray-ionization tandem mass spectrometry. J Chromatogr 1309:90–95CrossRefGoogle Scholar
  55. Romanha AJ, De Castro SL, Soeiro MNC, Lannes-Vieira J, Ribeiro I, Talvani A et al (2010) In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 105:233–238PubMedCrossRefGoogle Scholar
  56. Rosa LH, Vaz AB, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv, (Poaceae). Polar Biol 32:161–167CrossRefGoogle Scholar
  57. Rosa LH, Pellizari FM, Ogaki MB, De Paula MT, Mansilla A, Brito AA et al (2019a) Sub Antarctic and Antarctic marine ecosystems: an unexplored ecosystem of fungal diversity. In: Rosa LH (ed) Fungi of Antarctica: diversity, ecology and biotechnological applications. Springer, Berlin, pp 221–242CrossRefGoogle Scholar
  58. Rosa LH, Zani CL, Cantrell CL, Duke SO, Dijck PV, Desideri A, Rosa CA (2019b) Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds. In: Rosa LH (ed) Fungi of Antarctica, 1st edn. Springer, Cham, pp 1–17CrossRefGoogle Scholar
  59. Roth FJ, Orpurt PA, Ahearn DJ (1964) Occurrence and distribution of fungi in a subtropical marine environment. Can J Bot 42:375–383CrossRefGoogle Scholar
  60. Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097PubMedPubMedCentralCrossRefGoogle Scholar
  61. Singh P, Raghukumar C, Verma P, Shouche Y (2012) Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J Microbiol Biotechnol 28:659–667PubMedCrossRefGoogle Scholar
  62. Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–1806PubMedPubMedCentralCrossRefGoogle Scholar
  63. Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in arctic subglacial ice. Microb Ecol 52:207–216PubMedCrossRefGoogle Scholar
  64. Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285PubMedCrossRefGoogle Scholar
  65. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedPubMedCentralCrossRefGoogle Scholar
  66. Thaler AD, Dover CLV, Vilgalys R (2012) Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol 5:270–273CrossRefGoogle Scholar
  67. Tian J, Lai D, Zhou L (2017) Secondary metabolites from Acremonium fungi: diverse structures and bioactivities. Med Chem 17:603–632Google Scholar
  68. Tosi S, Casado B, Gerdol R (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268Google Scholar
  69. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675CrossRefGoogle Scholar
  70. White TJ, Bruns TD, Lee SB (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis NA, Gelfand J, Sninsky J, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  71. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Acad Natl Sci USA 95:578–6583CrossRefGoogle Scholar
  72. Xiao AN, Feng B, Chen G, Chen S, Wang H, Pei Y (2016) Isolation and identification of two new compounds from marine-derived fungus Acremonium fusidioides RZ01. Chin J Nat Med 14:934–938Google Scholar
  73. Zhang X, Tang G, Xu X, Nong X, Qi S (2014) Insights into deep-sea sediment fungal communities from the east Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One 9:e109118PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Mayara B. Ogaki
    • 1
  • Lívia C. Coelho
    • 1
  • Rosemary Vieira
    • 2
  • Arthur A. Neto
    • 2
  • Carlos L. Zani
    • 3
  • Tânia M. A. Alves
    • 3
  • Policarpo A. S. Junior
    • 3
  • Silvane M. F. Murta
    • 3
  • Emerson C. Barbosa
    • 3
  • Jaquelline G. Oliveira
    • 3
  • Isabela P. Ceravolo
    • 3
  • Patrícia O. Pereira
    • 3
  • Betania B. Cota
    • 3
  • Roberta O. Viana
    • 1
  • Viviane S. Alves
    • 1
  • Luiz H. Rosa
    • 1
    Email author
  1. 1.Departamento de MicrobiologiaUniversidade Federal de Minas GeraisBelo HorizonteBrasil
  2. 2.Instituto de GeociênciasUniversidade Federal FluminenseNiteróiBrasil
  3. 3.Instituto René RachouFIOCRUZ-MinasBelo HorizonteBrasil

Personalised recommendations