Advertisement

Extremophiles: a special or general case in the search for extra-terrestrial life?

  • Ian von HegnerEmail author
Original Paper

Abstract

Since time immemorial life has been viewed as fragile, yet over the past few decades it has been found that many extreme environments are inhabited by organisms known as extremophiles. Knowledge of their emergence, adaptability, and limitations seems to provide a guideline for the search of extra-terrestrial life, since some extremophiles presumably can survive in extreme environments such as Mars, Europa, and Enceladus. Due to physico-chemical constraints, the first life necessarily came into existence at the lower limit of its conceivable complexity. Thus, the first life could not have been an extremophile; furthermore, since biological evolution occurs over time, then the dual knowledge regarding what specific extremophiles are capable of, and to the analogue environment on extreme worlds, will not be sufficient as a search criterion. This is because, even though an extremophile can live in an extreme environment here-and-now, its ancestor however could not live in that very same environment in the past, which means that no contemporary extremophiles exist in that environment. Furthermore, a theoretical framework should be able to predict whether extremophiles can be considered a special or general case in the galaxy. Thus, a question is raised: does Earth’s continuous habitability represent an extreme or average value for planets? Thus, dependent on whether it is difficult or easy for worlds to maintain the habitability, the search for extra-terrestrial life with a focus on extremophiles will either represent a search for dying worlds, or a search for special life on living worlds, focusing too narrowly on extreme values.

Keywords

Astrobiology Biological evolution Inhabitability Complexity distribution 

Notes

References

  1. Bell EA, Boehnike P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci USA 112(47):14518–14521CrossRefGoogle Scholar
  2. Bekker A (2014) Huronian glaciation. In: Amils R et al (eds) Encyclopedia of astrobiology. Springer, BerlinGoogle Scholar
  3. Billi D, Friedmann EI, Helm RF, Potts M (2001) Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. J Bacteriol 183(7):2298–2305CrossRefGoogle Scholar
  4. Brandenburg JE (1987) The Paleo-Ocean of Mars. MECA symposium on mars: evolution of its climate and atmosphere. Lunar and Planetary Institute, pp 20–22 Bibcode:1987meca.symp...20B.Google Scholar
  5. Cassen P, Peale SJ, Reynolds RT (1980) Tidal dissipiation in Europa—a correction. Geophys Res Lett 7:987–988CrossRefGoogle Scholar
  6. Carter J, Poulet F, Bibring JP, Murchie S (2010) Detection of hydrated silicates in crustal outcrops in the northern plains of Mars. Science 328:1682–1686CrossRefGoogle Scholar
  7. Chyba CF, Phillips CB (2002) Europa as an abode of life. Orig Life Evol Biosph 32(1):47–68CrossRefGoogle Scholar
  8. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287CrossRefGoogle Scholar
  9. Coenraads RR, Koivula JI (2007) Geologica: Earth's dynamic forces. Elanora heights, Millennium House, NSWGoogle Scholar
  10. Connerney JEP, Acuna MH, Wasilewski PJ, Ness NF, Reme H, Mazelle C, Vignes D, Lin RP, Mitchell DL, Cloutier PA (1999) Magnetic lineations in the ancient crust of Mars. Science 284:794–798CrossRefGoogle Scholar
  11. Domagal-Goldman SD, Wright KE, Adamala K, Arina de la Rubia L, Bond J, Dartnell LR, Goldman AD, Lynch K, Naud M-E, Paulino-Lima IG, Singer K, Walter-Antonio M, Abrevaya XC, Anderson R, Arney G, Atri D, Azua-Bustos A, Bowman JS, Brazelton WJ, Brennecka GA, Carns R, Chopra A, Colangelo-Lillis J, Crockett CJ, DeMarines J, Frank EA, Frantz C, de la Fuente E, Galante D, Glass J, Gleeson D, Glein CR, Goldblatt C, Horak R, Horodyskyj L, Kacar B, Kereszturi A, Knowles E, Mayeur P, McGlynn S, Miguel Y, Montgomery M, Neish C, Noack L, Rugheimer S, Stueken EE, Tamez-Hidalgo P, Imari Walker S, Wong T (2016) The astrobiology primer v2.0. Astrobiology 16:561–653CrossRefGoogle Scholar
  12. Gaucher EAJT, Kratzer JT, Randall RN (2010) Deep phylogeny—how a tree can help characterize early life on Earth. Cold Spring Harb Perspect Biol 2:a002238CrossRefGoogle Scholar
  13. Green SF, Jones MB, Henry JS (2004) An introduction to the Sun and stars. Cambridge University Press, CambridgeGoogle Scholar
  14. Gould SJ (1996) Full house—the spread of excellence from Plato to Darwin. Harmony Books, New YorkCrossRefGoogle Scholar
  15. Fastook JL, Head JW (2015) Glaciation in the late Noachian icy highlands: ice accumulation, distribution, flow rates, basal melting and top-down melting rates and patterns. Planet Space Sci 106:82–98CrossRefGoogle Scholar
  16. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp nov Represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145(1):56–61CrossRefGoogle Scholar
  17. Harrison JP, Gheerraert N, Tsigelnitskiy D, Cockell CS (2013) The limits for life under multiple extremes. Trends Microbiol 21(4):204–212CrossRefGoogle Scholar
  18. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Science 281(5381):1342–1346CrossRefGoogle Scholar
  19. Labonte JM, Field EK, Lau M, Chivian D, Van Heerden E, Wommack KE, Kieft TL, Onstott T, Stepanauskas R (2015) Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front Microbiol 6:349PubMedPubMedCentralGoogle Scholar
  20. Kivelson MG, Khurana KK, Russell CT, Volwerk M, Walker RJ, Zimmer C (2000) Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289:1340–1343CrossRefGoogle Scholar
  21. Kopp R (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. PNAS 102(32):11131–11136CrossRefGoogle Scholar
  22. Martin A, McMinn A (2018) Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int J Astrobiol 17(1):11CrossRefGoogle Scholar
  23. Mykytczek NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG (2013) Bacterial growth at − 15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J 7(6):1211–1226CrossRefGoogle Scholar
  24. Moseley BE, Mattingly A (1971) Repair of irradiated transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans. J Bacteriol 105(3):976–983PubMedPubMedCentralGoogle Scholar
  25. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209CrossRefGoogle Scholar
  26. Rooney AD, Macdonald FA, Strauss JV, Dudás FÖ, Hallmann C, Selby D (2014) Re-Os geochronology and coupled Os–Sr isotope constraints on the Sturtian snowball Earth. PNAS 111(1):51–56CrossRefGoogle Scholar
  27. Rushby AJ, Claire MW, Osborn H, Watson AJ (2013) Habitable zone lifetimes of exoplanets around main sequence stars. Astrobiology 13:833–849CrossRefGoogle Scholar
  28. Scharf C, Virgo N, Cleaves HJ, Aono M, Aubert-Kato N, Aydinoglu A, Barahona A, Barge LM, Benner SA, Biehl M, Brasser R, Butch CJ, Chandru K, Cronin L, Danielache S, Fischer J, Hernlund J, Hut P, Ikegami T, Kimura J, Kobayashi K, Mariscal C, McGlynn S, Menard B, Packard N, Pascal R, Pereto J, Rajamani S, Sinapayen L, Smith E, Switzer C, Takai K, Tian F, Ueno Y, Yoytek M, Witkowski O, Yabuta H (2015) A strategy for origins of life research. Astrobiology 15(12):1031–1042CrossRefGoogle Scholar
  29. Schneider J (2019) Interactive extra-solar planets catalog. The extrasolar planets encyclopedia. Accessed 1 Apr 2019Google Scholar
  30. Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archean life: Stromatolites and microfossils. Precambr Res 158:141–155CrossRefGoogle Scholar
  31. Thomas PC, Tajeddine R, Tiscareno MS, Burns JA, Joseph J, Loredo TJ, Helfenstein P, Porco C (2016) Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264:37–47CrossRefGoogle Scholar
  32. Travis BJ, Schubert G (2015) Keeping Enceladus warm. Icarus 250:32–42CrossRefGoogle Scholar
  33. Von Hegner I (2019a) An ab initio definition of life pertaining to astrobiology.  https://doi.org/10.13140/RG.2.2.16009.90722
  34. Von Hegner I (2019b) Astrobiology and astrophilosophy: subsuming or bifurcating disciplines? Philos Cosmol 23:63–80Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aarhus UniversityAarhusDenmark

Personalised recommendations