Bioremediation potential of a halophilic Halobacillus sp. strain, EG1HP4QL: exopolysaccharide production, crude oil degradation, and heavy metal tolerance

  • Ibrahim M. Ibrahim
  • Svetlana A. Konnova
  • Elena N. Sigida
  • Elena V. Lyubun
  • Anna Yu. Muratova
  • Yulia P. FedonenkoEmail author
  • Кhaled Elbanna
Original Paper


A halophilic bacterial strain, EG1HP4QL, was isolated from a salt sample from Lake Qarun, Fayoum Province, Egypt. Morphological, physiological, biochemical, and phylogenetic analyses indicated that the strain belonged to the genus Halobacillus. Strain EG1HP4QL produced an extracellular polysaccharide (EPS), with production peaking (5.9 g L−1) during growth on medium S-G containing 2% (w/v) sucrose at 35 °C (pH 8.0). The EPS had significant emulsifying activity (E24 %) against kerosene (65.7 ± 0.8%), o-xylene (64.0 ± 1%), and sunflower oil (44.7 ± 0.5%). The composition of the EPS included two polymers—a negatively charged and a neutral one (~ 3:1)—in which mannose and glucose were the main neutral monosaccharide constituents. Strain EG1HP4QL was able to utilize crude oil (35.3%) as the sole carbon source within 12 days. The minimum inhibitory concentrations of heavy metals [Zn(II), Cd(II), Pb(II), Ni(II), and Cu(II)] for strain EG1HP4QL were 1.0, 2.0, 2.0, 2.5, and 5 mM, respectively.


Halobacillus sp. Extracellular polysaccharide Crude oil degradation Heavy metal tolerance 



We thank the staff of the Russian Collection of Agricultural Microorganisms of the All-Russia Research Institute for Agricultural Microbiology (St. Petersburg, Russia) for the sequence of the gene 16S rDNA and Dr. Andrey M. Burov from the Simbioz Center for the Collective Use of Research Equipment in the Field of Physical–Chemical Biology and Nanobiotechnology (IBPPM RAS) for technical support in transmission electron microscopy.

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amoozegar MA, Malekzadeh F, Malik KA, Schumann P, Spröer C (2003) Halobacillus karajensis sp. nov., a novel moderate halophile. Int J Syst Evol Microbiol 53(4):1059–1063. CrossRefPubMedGoogle Scholar
  3. Arun J, Sathishkumar R, Muneeswaran T (2014) Optimization of extracellular polysaccharide production in Halobacillus trueperi AJSK using response surface methodology. Afr J Biotechnol 13(48):4449–4457. CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41(5):653–673PubMedPubMedCentralGoogle Scholar
  6. Chen YG, Cui XL, Pukall R, Li HM, Yang YL, Xu LH, Wen ML, Peng Q, Jiang CL (2007) Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-west China. Int J Syst Evol Microbiol 57:2327–2332. CrossRefPubMedGoogle Scholar
  7. Chen YG, Liu ZX, Zhang YQ, Zhang YX, Tang SK, Borrathybay E, Li WJ, Cui XL (2009) Halobacillus naozhouensis sp. nov., a moderately halophilic bacterium isolated from a sea anemone. Antonie Van Leeuwenhoek 96(1):99–107. CrossRefPubMedGoogle Scholar
  8. Claus D, Fahmy F, Rolf HJ, Tosunoglu N (1983) Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. System Appl Microbiol 4:496–506. CrossRefGoogle Scholar
  9. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53(1):224–229PubMedPubMedCentralGoogle Scholar
  10. Cosa S, Ugbenyen AM, Mabinya LV, Rumbold K, Okoh AI (2013) Characterization and flocculation efficiency of a bioflocculant produced by a marine Halobacillus. Environ Technol. CrossRefPubMedGoogle Scholar
  11. Cowan ST, Steel KJ (1965) Manual for identification of medical bacteria. Cambrige University Press, LondonGoogle Scholar
  12. DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126. CrossRefPubMedPubMedCentralGoogle Scholar
  13. de Almeida Couto CR, Alvarez VM, Marques JM, de Azevedo JD, Seldin L (2015) Exploiting the aerobic endospore-forming bacterial diversity in saline and hypersaline environments for biosurfactant production. BMC Microbiol 15:240. CrossRefPubMedGoogle Scholar
  14. De Vuyst L, De Vin F, Vaningelgem F, Degeest B (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11:687–708. CrossRefGoogle Scholar
  15. Desale P, Patel B, Singh S, Malhotra A, Nawani N (2014) Plant growth promoting properties of Halobacillus sp and Halomonas sp in presence of salinity and heavy metals. J Basic Microbiol 54(8):781–791. CrossRefPubMedGoogle Scholar
  16. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. CrossRefGoogle Scholar
  17. Elbanna K, Ibrahim IM, Revol-Junelles AM (2015) Purification and characterization of halo-alkali-thermophilic protease from Halobacterium sp. strain HP25 isolated from raw salt, Lake Qarun, Fayoum, Egypt. Extremophiles Scholar
  18. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. CrossRefPubMedGoogle Scholar
  20. Fukuda K, Shi T, Nagami K, Leo F, Nakamura T, Yasuda K, Senda A, Motoshima H, Urashima T (2010) Effects of carbohydrate source on physicochemical properties of the exopolysaccharide produced by Lactobacillus fermentum TDS030603 in a chemically defined medium. Carbohydr Polym 79(4):1040–1045. CrossRefGoogle Scholar
  21. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J App Microbiol Biotech 5:123–127. CrossRefGoogle Scholar
  22. Hong Z, Chen W, Rong X, Cai P, Dai K, Huang Q (2013) The effect of extracellular polymeric substances on the adhesion of bacteria to clay minerals and goethite. Chem Geol 360:118–125. CrossRefGoogle Scholar
  23. Joshi N, Ngwenya BT, French CE (2012) Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. J Hazard Mater 241:363–370. CrossRefPubMedGoogle Scholar
  24. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. CrossRefPubMedGoogle Scholar
  25. Kumar CG, Joo H-S, Choi J-W, Koo Y-M, Chang C-S (2004) Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme Microb Technol 34:673–681. CrossRefGoogle Scholar
  26. Lefort V, Desper R, Gascuel O (2015) FastME 20: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32(10):2798–2800. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Litchfield CD, Gillevet MP (2002) Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotech 28:48–55. CrossRefGoogle Scholar
  28. Liu WY, Zeng J, Wang L, Dou YT, Yang SS (2005) Halobacillus dabanensis sp. nov. and Halobacillus aidingensis sp. nov., isolated from salt lakes in Xinjiang, China. Int J Syst Evol Microbiol 55(5), 1991–1996. doi: 10.1099/ijs.0.63787-0.CrossRefGoogle Scholar
  29. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663. CrossRefPubMedGoogle Scholar
  30. Maugeri TL, Gugliandolo C, Caccamo D, Panico A, Lama L, Gambacorta A, Nicolaus B (2002) A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol Lett 24:515–519. CrossRefGoogle Scholar
  31. Mayer H, Tharanathan RN, Weckesser J (1985) Analysis of lipopolysaccharides of Gram-negative bacteria. Methods Microbiol 18:157–207. CrossRefGoogle Scholar
  32. More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage 144:1–25. CrossRefPubMedGoogle Scholar
  33. Mukhtar S, Mehnaz S, Mirza MS, Mirza BS, Malik KA (2018) Diversity of Bacillus-like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola), and characterization of osmoregulatory genes in halophilic Bacilli. Can J Microbiol 64(8):567–579. CrossRefPubMedGoogle Scholar
  34. Nicolaus B, Panico A, Manca AC, Lama L, Gambacorta A, Maugeri T, Guagliandolo C, Caccamo D (2000) A thermophilic Bacillus isolated from an Eolian shallow hydrothermal vent, able to produce exopolysaccharides. Syst Appl Microbiol 23:426–432. CrossRefPubMedGoogle Scholar
  35. Peng QZ, Peng QJ, Zhang YQ, Liu ZX, Wang YX, Li WJ, Cui XL, Chen YG (2009) Halobacillus hunanensis sp. nov., a moderately halophilic bacterium isolated from a subterranean brine. Antonie Van Leeuwenhoek 96(4):497–504. CrossRefPubMedGoogle Scholar
  36. Petry S, Furlan S, Crepeau MJ, Cerning J, Desmazeaud M (2000) Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp.bulgaricus grown in a chemically defined medium. Appl Environ Microbiol 66:3427–3431. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Polak-Berecka M, Choma A, Waśko A, Górska S, Gamian A, Cybulska J (2015) Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohydr Polym 117:501–509. CrossRefPubMedGoogle Scholar
  38. Priyanka P, Arun AB, Ashwini P, Rekha PD (2015) Versatile properties of an exopolysaccharide R-PS18 produced by Rhizobium sp. PRIM-18. Carbohydr Polym 126:215–221. CrossRefPubMedGoogle Scholar
  39. Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (2007) Methods for general and molecular microbiology, 3rd edn. American Society for Microbiology, Washington, DCGoogle Scholar
  40. Romano I, Finore I, Nicolaus G, Huertas FJ, Lama L, Nicolaus B, Poli A (2008) Halobacillus alkaliphilus sp. nov., a halophilic bacterium isolated from a salt lake in Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol. 58(4):886–890. CrossRefPubMedGoogle Scholar
  41. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants: minireview. Environ Microbiol 3:229–236. CrossRefPubMedGoogle Scholar
  42. Sarwar MK, Azam I, Iqbal T (2015) Biology and applications of halophilic bacteria and archaea: a review. Electronic J Biol 11(3):98–103Google Scholar
  43. Sawardeker JS, Sloneker JH, Jeanes A (1965) Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Anal Chem 37(12):1602–1604. CrossRefGoogle Scholar
  44. Schaeffer AB, Fulton MD (1933) A simplified method of staining endospores. Science 77:194. CrossRefPubMedGoogle Scholar
  45. Sehgal SN, Gibbons NE (1960) Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 6(2):165–169. CrossRefPubMedGoogle Scholar
  46. Smibert RM, Krieg NR (1994) Phenotypic characterization. In^ Gerhard P, Murray RGE, WOOD WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654.Google Scholar
  47. Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer KH (1996) Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporsarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496. CrossRefGoogle Scholar
  48. Tian Y (2008) Behaviour of bacterial extracellular polymeric substances from activated sludge: a review. Int J Environ Pollut 32:78–89. CrossRefGoogle Scholar
  49. Van der Meulen R, Grosu-Tudor S, Mozzi F, Vaningelgem F, Zamfir M, Font de Valdez G, De Vuyst L (2007) Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved. Int J Food Microbiol 118:250–258. CrossRefPubMedGoogle Scholar
  50. Ventosa A, Quesada A, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic gram-negative rods. J Gen Microbiol 128:1959–1968. CrossRefGoogle Scholar
  51. Ventosa A, Márquez MC, Garabito MJ, Arahal DR (1998) Moderately halophilic gram-positive bacterial diversity in hypersaline environments. Extremophiles 2(3):297–304. CrossRefPubMedGoogle Scholar
  52. Wang K, Zhang L, Yang Y, Pan Y, Meng L, Liu H, Hong S, Huang H, Jiang J (2015) Halobacillus andaensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soil. Int J Syst Evol Microbiol 65(6):1908–1914. CrossRefPubMedGoogle Scholar
  53. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61(5):1706–1713PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Ibrahim M. Ibrahim
    • 1
    • 2
  • Svetlana A. Konnova
    • 1
    • 3
  • Elena N. Sigida
    • 3
  • Elena V. Lyubun
    • 3
  • Anna Yu. Muratova
    • 3
  • Yulia P. Fedonenko
    • 1
    • 3
    Email author
  • Кhaled Elbanna
    • 2
    • 4
  1. 1.Chernyshevsky Saratov State UniversitySaratovRussia
  2. 2.Department of Agricultural Microbiology, Faculty of AgricultureFayoum UniversityFayoumEgypt
  3. 3.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  4. 4.Department of Biology, Faculty of Applied ScienceUmm Al-Qura UniversityMakkahKingdom of Saudi Arabia

Personalised recommendations