, Volume 24, Issue 1, pp 135–145 | Cite as

Cell membrane fatty acid and pigment composition of the psychrotolerant cyanobacterium Nodularia spumigena CHS1 isolated from Hopar glacier, Pakistan

  • Noor Hassan
  • Alexandre M. Anesio
  • Muhammad Rafiq
  • Jens Holtvoeth
  • Ian Bull
  • Christopher J. Williamson
  • Fariha HasanEmail author
Original Paper


In the present study, cyanobacterium isolate CHS1 isolated from Hopar glacier, Pakistan, was analyzed for the first time for cell membrane fatty acids and production of pigments. Sequencing of the 16-23S intergenetic region confirmed identification of the isolate CHS1 as Nodularia spumigena. All chlorophyll and carotenoid pigments were quantified using high-performance liquid chromatography and experiments to test tolerance against a range of physico-chemical conditions were conducted. Likewise, the fatty acid profile of the cell membrane CHS1 was analyzed using gas chromatography and mass spectroscopy. The cyanobacterium isolate CHS1 demonstrated tolerance to 8 g/L% NaCl, 35°C and pH 5–9. The characteristic polyunsaturated fatty acid (PUFA) of isolate CHS1, C18:4, was observed in fatty acid methyl esters (FAMEs) extracted from the cell membrane. CHS1 was capable of producing saturated fatty acids (SFA) (e.g., C16:0), monounsaturated fatty acids (MUFA) (e.g., C18:1) and polyunsaturated fatty acids (e.g., C20:5) in the cell membrane. In this study, we hypothesize that one mechanism of cold adaptation displayed by isolate CHS1 is the accumulation of high amounts of PUFA in the cell membrane.


Nodularia spumigena CHS1 Cyanobacteria Cell membrane FAMEs Hopar glacier 



The research work was financially supported by Commonwealth Scholarship Commission, United Kingdom. In addition, NERC Life Sciences Mass Spectrometry Facility, School of Chemistry, University of Bristol, also supported this study.

Supplementary material

792_2019_1141_MOESM1_ESM.docx (21 kb)
Supplementary file1 (DOCX 20 kb)
792_2019_1141_MOESM2_ESM.docx (15 kb)
Supplementary file2 (DOCX 15 kb)


  1. Aplin THE, Main DC (1974) Toxic water blooms. Western Australian Department of Agriculture, Bulletin 3940Google Scholar
  2. Abd El Razak A, Ward AC, Glassey J (2014) Screening of marine bacterial producers of polyunsaturated fatty acids and optimisation of production. Microb Ecol 67:454–464PubMedGoogle Scholar
  3. Baker PD (1992) Identification of common noxious cyanobacteria. Part II—Chroococcales and Oscillatoriales. Urban Water Res Assoc Aust Res Rep 46:139Google Scholar
  4. Barker GL, Handley BA, Vacharapiyasophon P, Stevens JR, Hayes PK (2000) Allele–specific PCR shows that genetic exchange occurs among genetically diverse Nodularia (Cyanobacteria) filaments in the Baltic Sea. Microbiol 146:2865–2875Google Scholar
  5. Blackburn SI, McCausland MA, Bolch CJS, Newman SJ, Jones GJ (1996) Effect of salinity on growth and toxin production in cultures of the bloom–forming cyanobacterium Nodularia spumigena from Australian waters. Phycol 35:511–522Google Scholar
  6. Bolch CJS, Jones PTOGJ, Blackburn SI (1999) Genetic, morphological, and toxicological variation among globally distributed strains of Nodularia (Cyanobacteria). J Phycol 35:339–355Google Scholar
  7. Broady PA (1982) Taxonomy and ecology of algae in a freshwater stream in Taylor Valley, Victoria Land, Antarctica. Arch Hydrobiol 32:331–349Google Scholar
  8. Chrismas NAM, Anesio AM, Sánchez-Baracaldo P (2015) Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Front Microbiol 6:1070PubMedCentralPubMedGoogle Scholar
  9. Congestri R, Capucci E, Albertano P (2003) Morphometric variability of the genus Nodularia (Cyanobacteria) in the Baltic natural communities. Aquat Microb Ecol 32:251–259Google Scholar
  10. da Silveiraa SB, Wasieleskya W, Andreoteb APD, Fioreb MF, Odebrecht C (2017) Morphology, phylogeny, growth rate and nodularin production of Nodularia spumigena from Brazil. Mar Biol Res 13:1095–1107Google Scholar
  11. DeSmet WH, Van Rompu EA (1994) Rotifera and tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) glacier. Belg J Zool 124(1):27–37Google Scholar
  12. Edwards A, Mur LAJ, Girdwood SE, Anesio AM, Stibal M, Rassner SME, Sattler B (2014) Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol Ecol 89:222–237PubMedGoogle Scholar
  13. Golden JW, Carrasco CD, Mulligan ME, Schneider GJ, Haselkorn R (1988) Deletion of a 55–kilobase–pair DNA element from the chromosome during heterocyst differentiation of Anabaena sp. strain PCC 7120. J Bacteriol 170:5034–5041PubMedCentralPubMedGoogle Scholar
  14. Gorokhova E, Engström-Öst J (2009) Toxin concentration in Nodularia spumigena is modulated by mesozooplankton grazers. J Plankton Res 31(10):1235–1247Google Scholar
  15. Gronlund L, Kononen K, Lahdes E, Makela K (1996) Community development and modes of phosphorus utilization in a late summer ecosystem in the central Gulf of Finland, the Baltic Sea. Hydrobiol 331:97–108Google Scholar
  16. Hall TA (1999) BioEdit: a user–friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  17. Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in high arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243PubMedCentralPubMedGoogle Scholar
  18. Henriksen P (2005) Estimating nodularin content of cyanobacterial blooms from abundance of Nodularia spumigena and its characteristic pigments—A case study from the Baltic entrance area. Harmful Algae 4:167–178Google Scholar
  19. Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Snow ecology. Cambridge University Press, Cambridge, pp 168–228Google Scholar
  20. Hong JW, Choi H, Kang S, Yoon H (2010) Axenic purification and cultivation of an arctic cyanobacterium, Nodularia spumigena KNUA005, with cold tolerance potential for sustainable production of algae–based biofuel. Algae 25(2):99–104Google Scholar
  21. Huber AL (1986) Nitrogen fixation by Nodularia spumigena Mertens (Cyanobacteriaceae). 1: Field studies and the contribution of blooms to the Nitrogenbudget of the Peel-Harvey estuary, western Australia. Hydrobiol 131:193–203Google Scholar
  22. Huber AL (1985) Factors affecting the germination of akinetes of Nodularia spumigena (Cyanobacteriaceae). Appl Environ Microbiol 49:73–78PubMedCentralPubMedGoogle Scholar
  23. Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiol 146:1275–1286Google Scholar
  24. John J, Kemp A (2006) Cyanobacterial blooms in the wetlands of the Perth region, taxonomy and distribution: an overview. J R Soc West Aust 89:51–56Google Scholar
  25. Jones GJ, Blackburn SI, Parker NS (1994) A toxic bloom of Nodularia spumigena Mertens in Orielton Lagoon, Tasmania. Aust J Mar Freshw Res 45:787–800Google Scholar
  26. Jüirgens UJ, Weckesser J (1985) Carotenoid–containing outer membrane of Synechocystis sp. strain PCC 6714. J Bacteriol 164:384–389Google Scholar
  27. Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202PubMedGoogle Scholar
  28. Karentz D (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. Antarct Res Ser 62:93–110Google Scholar
  29. Karjalainen M, Engström-Öst J, Korpinen S, Peltonen H, Pääkkönen JP, Rönkkönen S, Suikkanen S, Viitasalo M (2007) Ecosystem consequences of cyanobacteria in the northern Baltic Sea. Ambio 36:195–202PubMedGoogle Scholar
  30. Kenyons CN, Rippka R, Stanier RY (1972) Fatty acid composition and physiological properties of some filamentous blue–green algae. Arch Microbiol 83:216–236Google Scholar
  31. Komarek J (2013) Cyanoprokaryota – 3. Part 3: Heterocystous genera. In: Büdel B, Gärtner G, Krienitz L, Schagerl M (eds) Süßwasserflora von Mitteleuropa. Springer, Heidelberg, pp 904–919Google Scholar
  32. Komarek J, Hubel M, Hubel H, Smarda J (1993) The Nodularia studies 2 Taxonomy. Algol Stud 68:1–25Google Scholar
  33. Laamanen MJ, Gugger MF, Lehtimaki JM, Haukka K, Sivonen K (2001) Diversity of toxic and nontoxic Nodularia Isolates (Cyanobacteria) and filaments from the Baltic Sea. Appl Environ Microbiol 1:4638–4647Google Scholar
  34. Lehtimaki J, Lyra C, Suomalainen S, Sundman P, Rouhiainen L, Paulin L, Salkinoja-Salonen M, Sivonen K (2000) Characterization of Nodularia strains, cyanobacteria from brackish waters, by genotypic and phenotypic methods. Int J Syst Evol Microbiol 50:1043–1053PubMedGoogle Scholar
  35. Lehtimaki J, Sivonen K, Luukkainen R, Niemela SI (1994) The effect of incubation time, light, salinity, and phosphorus on growth and hepatotoxin production by Nodularia strains. Arch Hydrobiol 130:269–282Google Scholar
  36. Lepere C, Wilmotte A, Meyer B (2000) Molecular diversity of Microcystis strains (Cyanophyceae, Chroococcales) based on 16S rDNA sequences. Syst Geogr Plants 70:275–283Google Scholar
  37. Los DA (2004) The effect of low–temperature–induced DNA supercoiling on the expression of the desaturase genes in Synechocystis. Cell Mol Biol 50:605–612PubMedGoogle Scholar
  38. Los DA, Mironov KS (2015) Modes of fatty acid desaturation in cyanobacteria: an update. Life 5(1):554–567PubMedCentralPubMedGoogle Scholar
  39. Lund P, Tramonti A, Biase DD (2014) Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 38(6):1091–1125PubMedGoogle Scholar
  40. Main DC, Berry PH, Peet RL, Robertson JP (1977) Sheep mortalities associated with the blue–green alga Nodularia spumigena. Aust Vet J 53:578–581PubMedGoogle Scholar
  41. Mazur–Marzec H, Kaczkowska MJ, Blaszczyk A, Akcaalan R, Spoof L, Meriluoto J (2013) Diversity of peptides produced by Nodularia spumigena from various geographical regions. Mar Drugs 11:1–19Google Scholar
  42. Mazur–Marzec H, Zeglinska L, Plinski M (2005) The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena isolated from the Gulf of Gdansk, southern Baltic Sea. J Appl Phycol 17:171–179Google Scholar
  43. McGregor GB, Stewart I, Sendall BC, Sadler R et al (2012) First report of a toxic Nodularia spumigena (Nostocales/Cyanobacteria) bloom in sub–tropical Australia. I. Phycological and public health investigations. Int J Environ Res Public Health 9:2396–2411PubMedCentralPubMedGoogle Scholar
  44. McKnight DM, Alger A, Tate CM, Shupe G, Spaulding SA (1998) Longitudinal patterns in algal abundance and species distribution in meltwater streams in Taylor Valley, southern Victoria Land, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, pp 109–127Google Scholar
  45. Mohlin M, Wulff A (2009) Interaction effects of ambient UV radiation and nutrient limitation on the toxic cyanobacterium Nodularia spumigena. Microb Ecol 57:675–686PubMedGoogle Scholar
  46. Moisander PH, McClinton E, Pearl HW (2002) Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 43:432–442PubMedGoogle Scholar
  47. Murata N (1989) Low temperature effects on cyanobacterial membranes. J Bioenerg Biomembr 21(1):61–75PubMedGoogle Scholar
  48. Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879PubMedCentralPubMedGoogle Scholar
  49. Murata N, Nishida I (1987) Lipids of blue–green algae (cyanobacteria). In: Stumpf PK (ed) The Biochemistry of plants, vol 9. Academic Press, Orlando, pp 315–347Google Scholar
  50. Mwnv DC, Berry PH, Peer RL, Roeeersox JP (1977) Sheep mortalities associated with the blue–green alga Nodularia spumigena. Aust vet J 53:578Google Scholar
  51. Nordin RN, Stein JR (1980) Taxonomic revision of Nodularia (Cyanophyceae/ Cyanobacteria). Can J Bot 58:1211–1224Google Scholar
  52. Nubel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedCentralPubMedGoogle Scholar
  53. Oliva MG, Lugo A, Alcocer J, Peralata L, Oseguera LA (2009) Planktonic bloom–forming Nodularia in the saline Lake Alchichica, Mexico. Nat Resour Environ Issues 15:121–126Google Scholar
  54. Omata T, Murat N (1985) Electron–transport reactions in cytoplasmic and thylakoid membranes prepared from the cyanobacteria (blue–green algae) Anacystis nidulans and Synechocystis PCC 6714. Biochim Biophys Acta 810:354–361Google Scholar
  55. Omata T, Murata N (1984) Isolation and characterization of plasma membranes from cyanobacteria. Arch Microbial 139:113–116Google Scholar
  56. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717(2):67–88PubMedCentralPubMedGoogle Scholar
  57. Paerl HW (1988) Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol Oceanogr 33:823–847Google Scholar
  58. Ploug H (2008) Cyanobacterial aggregates formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: small–scale fluxes, pH and oxygen microenvironments. Limnol Oceanogr 53:914–921Google Scholar
  59. Ploug H, Adam B, Musat N, Kalvelage T, Lavik G, Wolf-Gladrow D, Kuypers MMM (2011) Carbon, nitrogen and O2 fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic Sea. ISME J 5:1549–1558PubMedCentralPubMedGoogle Scholar
  60. Rafiq M, Hayat M, Anesio AM, Jamil SUU, Hassan N, Shah AA, Hasan F (2017) Recovery of metallo–tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan. PLoS ONE 12:56–61Google Scholar
  61. Reakova K, Mareš J, Lukkešová A, Zapomelová E, Bernardová K, Hrouzek P (2014) Nodularia (Cyanobacteria, Nostocaceae): a phylogenetically uniform genus with variable phenotypes. Phytotaxa 172:235–246Google Scholar
  62. Resch CM, Gibson J (1983) Isolation of the carotenoid–containing cell wall of three unicellular cyanobacteria. J Bacterial 155:345–350Google Scholar
  63. Rippka R, Deruelles J, Waterbury JB, Herdmann M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  64. Runnegar MTC, Jackson ARB, Falconer IR (1988) Toxicity of the cyanobacterium Nodularia spumigena. Mertens Toxicon 26:143–151PubMedGoogle Scholar
  65. Salomon PS, Janson S, Granéli E (2003) Molecular identification of bacteria associated with filaments of Nodularia spumigena and their effect on the cyanobacterial growth. Harmful Algae 2:261–272Google Scholar
  66. Sato N, Murata N (1980) Temperature shift–induced responses in lipids in the blue–green alga, Anabaena variabilis. Biochim Biophys Acta 619:353–366PubMedGoogle Scholar
  67. Segawa T, Yonezawa T, Edwards A, Akiyoshi A, Tanaka S et al (2017) Biogeography of cryoconite forming cyanobacteria on polar and Asian glaciers. J Biogeogr 44:2849–2861Google Scholar
  68. Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real–time PCR. Appl Environ Microbiol 71:123–130PubMedCentralPubMedGoogle Scholar
  69. Sinha RP, Hader DP (2008) UV–protectants in cyanobacteria. Plant Sci 174:278–289Google Scholar
  70. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & IN Spon, London, pp 41–111Google Scholar
  71. Sivonen K, Kononen K, Carmichael W, Dahlem AM, Rinehart KL, Kiviranta J, Niemela SI (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl Environ Microbiol 55:1990–1995PubMedCentralPubMedGoogle Scholar
  72. Sotton B, Domaizon I, Anneville O, Cattanéo F, Guillard J (2015) Nodularin and cylindrospermopsin: A review of their effects on fish. Rev Fish Biol Fisher 25:1–19Google Scholar
  73. Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274PubMedGoogle Scholar
  74. Suikkanen S, Kaartokallio H, Hallfors S, Huttunen M, Laamanen M (2010) Life cycle strategies of bloom–forming, filamentous cyanobacteria in the Baltic Sea. Deep Sea Res II 57:199–209Google Scholar
  75. Suikkanen S, Laamanen M, Huttunen M (2007) Long–term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar Coast Shelf Sci 71:580–592Google Scholar
  76. Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2– Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557PubMedGoogle Scholar
  77. Takeuchi N (2001) The altitudinal distribution of snow algae on an Alaskan glacier (Gulkana Glacier in the Alaska Range). Hydr Process 15:3447–3459Google Scholar
  78. Takeuchi N, Kohshima S, Goto-Azuma K, Koerner RM (2001a) Biological characteristics of dark–colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps). Natl Inst Polar Res Mem 54:495–505Google Scholar
  79. Takeuchi N, Kohshima S, Shiraiwa T, Kubota K (2001b) Characteristics of cryoconite (surface dust on glaciers) and surface albedo of a Patagonian glacier, Tyndall Glacier Southern Patagonia Icefield. Bull Glaciol Res 18:65–69Google Scholar
  80. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis Version 6.0. Mol Biol Evol 30(12):2725–2729PubMedCentralPubMedGoogle Scholar
  81. Taton A, Grubisic S, Balthazart P, Hodgson DA, LaybournParry J, Wilmotte A (2006a) Biogeographical distribution and ecological range of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289PubMedGoogle Scholar
  82. Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169PubMedCentralPubMedGoogle Scholar
  83. Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N et al (2006b) Polyphasic study of Antarctic cyanobacterial strains. J Phycol 42:1257–1270Google Scholar
  84. Taton A, Hoffmann L, Wilmotte A (2008) Cyanobacteria in microbial mats of Antarctic lakes (East Antarctica)—a microscopical approach. Algol Stud 126:173–208Google Scholar
  85. Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006c) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289PubMedGoogle Scholar
  86. Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, DAgata C, Vaughan–Martini CSA (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83PubMedGoogle Scholar
  87. Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol 11:13–52Google Scholar
  88. Uetake J, Naganuma T, Hebsgaard MB, Kanda H, Kohshima S (2010) Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci 4:71–80Google Scholar
  89. Van Heukelem L, Thomas CS (2001) Computer–assisted high performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49PubMedGoogle Scholar
  90. Villafane VE, Sundbäck K, Figueroa FL, Helbling WE (2003) Photosynthesis in the aquatic environment as affected by ultraviolet radiation. In: Helbling WE, Zagarese H (eds) UV effects in aquatic organisms and ecosystems Comprehensive Series in Photosciences. Royal Society of Chemistry Cambridge, Cambridge, pp 357–398Google Scholar
  91. Vincent WF(2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Springer, Dordrecht.Google Scholar
  92. Vincent WF, Mueller DR, Bonilla S (2004) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiol 48:103–112Google Scholar
  93. Wada H, Murata N (1990) Temperature–induced changes in the fatty acid composition of the Cyanobacterium, Synechocystis PCC68031. Plant Physiol 30:971–978Google Scholar
  94. Wasmund N (1997) Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions. Int. Revue Ges Hydrobiol 82(2):169–184Google Scholar
  95. Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Amsterdam, pp 1–25Google Scholar
  96. Wilmotte A, Van der Auwera G, De Wachter R (1993) Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (Mastigocladus laminosus HTF’) strain PCC7518, and phylogenic analysis. FEMS Lett 317:96–100Google Scholar
  97. Wulff A, Mohlin M, Sundback K (2007) Intraspecific variation in the response of the cyanobacterium Nodularia spumigena to moderate UV–B radiation. Harmful Algae 6:388–399Google Scholar
  98. Zakhia F, Jungblut AD, Taton A, Vincent WF, Wilmotte A (2007) Cyanobacteria in cold environments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 121–135Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Noor Hassan
    • 1
    • 2
  • Alexandre M. Anesio
    • 2
    • 3
  • Muhammad Rafiq
    • 1
    • 4
  • Jens Holtvoeth
    • 5
  • Ian Bull
    • 5
  • Christopher J. Williamson
    • 2
  • Fariha Hasan
    • 1
    Email author
  1. 1.Applied, Environmental and Geomicrobiology Laboratory, Department of MicrobiologyQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Bristol Glaciology Centre, School of Geographical Sciences, Faculty of ScienceUniversity of BristolBristolUK
  3. 3.Department of Environmental ScienceAarhus UniversityRoskildeDenmark
  4. 4.Department of MicrobiologyBalochistan University of Information Technology, Engineering and Management SciencesQuettaPakistan
  5. 5.Organic Geochemistry Unit, School of Chemistry, Faculty of ScienceUniversity of BristolBristolUK

Personalised recommendations