Advertisement

Diverse respiratory capacity among Thermus strains from US Great Basin hot springs

  • En-Min Zhou
  • Arinola L. Adegboruwa
  • Chrisabelle C. Mefferd
  • Shrikant S. Bhute
  • Senthil K. Murugapiran
  • Jeremy A. Dodsworth
  • Scott C. Thomas
  • Amanda J. Bengtson
  • Lan Liu
  • Wen-Dong Xian
  • Wen-Jun LiEmail author
  • Brian P. HedlundEmail author
SPECIAL FEATURE: ORIGINAL PAPER 12th International Congress on Extremophiles
  • 83 Downloads
Part of the following topical collections:
  1. 12th International Congress on Extremophiles

Abstract

Thermus species are thermophilic heterotrophs, with most capable of using a variety of organic and inorganic electron donors for respiration. Here, a combined cultivation-independent and -dependent approach was used to explore the diversity of Thermus in Great Boiling Spring (GBS) and Little Hot Creek (LHC) in the US Great Basin. A cultivation-independent 16S rRNA gene survey of ten LHC sites showed that Thermus made up 0–3.5% of sequences and were predominately Thermus thermophilus. 189 Thermus isolates from GBS and LHC were affiliated with T. aquaticus (73.0%), T. oshimai (25.4%), T. sediminis (1.1%), and T. thermophilus (0.5%), with T. aquaticus and T. oshimai forming biogeographic clusters. 22 strains were selected for characterization, including chemolithotrophic oxidation of thiosulfate and arsenite, and reduction of ferric iron, polysulfide, and nitrate, revealing phenotypic diversity and broad respiratory capability within each species. PCR demonstrated the wide distribution of aerobic arsenite oxidase genes. A GBS sediment metaproteome contained sulfite oxidase and Fe3+ ABC transporter permease peptides, suggesting sulfur and iron transformations in situ. This study expands our knowledge of the physiological diversity of Thermus, suggesting widespread chemolithotrophic and anaerobic respiration phenotypes, and providing a foundation for better understanding the ecology of this genus in thermal ecosystems.

Keywords

Thermus Great Basin Great Boiling Spring Little Hot Creek Respiratory capacity 

Abbreviations

LHC

Little Hot Creek

GBS

Great Boiling Spring

Notes

Acknowledgements

We thank the National Forest Service (Inyo National Forest, Mammoth Lakes Office) for permission to sample Little Hot Creek and David and Sandy Jamieson for gracious support and access to Great Boiling Spring. This work was supported by the National Natural Science Foundation of China (Nos. 31600103 and 31470139), China Postdoctoral Science Foundation (2016M602569), and National Science Foundation grants (OISE-0968421 and DBI-1005223). Wen-Jun Li was also supported by Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme (2014). B.P. Hedlund was also funded by a gift from Greg Fullmer through the UNLV Foundation.

Author Contributions

EMZ, WJL and BPH conceived and designed the experiments; EMZ, JAD, SKM collected the samples; EMZ, ALA, CCM, SSB, AJW, LL, and WDX performed the experiments and analyzed the data; JAD, SCT, ALA, BPH, and WJL supervised the experiment. All authors assisted in writing the manuscript, discussed the results and commented on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

792_2019_1131_MOESM1_ESM.xlsx (29 kb)
Supplementary file1 (XLSX 28 kb)
792_2019_1131_MOESM2_ESM.docx (393 kb)
Supplementary file2 (DOCX 393 kb)

References

  1. Albuquerque L, Rainey FA, Da Costa MS (2018) Thermus. In: Whitman WB et al. (eds) Bergey's manual of systematics of archaea and bacteria. https://doi.org/10.1002/9781118960608.gbm00477.pub2
  2. Averhoff B (2009) Shuffling genes around in hot environments: the unique DNA transporter of Thermus thermophilus. FEMS Microbiol Rev 33:611–626.  https://doi.org/10.1111/j.1574-6976.2008.00160.x CrossRefPubMedGoogle Scholar
  3. Balkwill DL, Kieft TL, Tsukuda T, Kostandarithes HM, Onstott TC, Macnaughton S, Bownas J, Fredrickson JK (2004) Identification of iron-reducing Thermus strains as Thermus scotoductus. Extremophiles 8:37–44CrossRefGoogle Scholar
  4. Bester PA, Litthauer D, Piater LA, van Heerden E (2010) A thioredoxin reductase-like protein from the thermophile, Thermus scotoductus SA-01, displaying iron reductase activity. FEMS Microbiol Lett 302:182–188.  https://doi.org/10.1111/j.1574-6968.2009.01852.x CrossRefPubMedGoogle Scholar
  5. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297PubMedPubMedCentralGoogle Scholar
  6. Callahan B, McMurdie P, Rosen M, Han A, Johnson A, Holmes S (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583.  https://doi.org/10.1038/nmeth.3869 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello E, Fierer N, Pena A, Goodrich J, Godron J, Huttley G, Kelley S, Knights D, Koenig J, Ley R, Lozupone C, McDonald D, Muegge B, Pirrung M, Reeder J, Sevinsky J, Turnbaugh P, Walters W, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefGoogle Scholar
  8. Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504PubMedPubMedCentralGoogle Scholar
  9. Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP (2009) Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13:447–459CrossRefGoogle Scholar
  10. Degryse E, Glansdorff N, Piérard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196CrossRefGoogle Scholar
  11. Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit deep, red sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085CrossRefGoogle Scholar
  12. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376.  https://doi.org/10.1007/BF01734359 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution.  https://doi.org/10.1111/j.1558-5646.1985.tb00420.x CrossRefPubMedGoogle Scholar
  14. Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 35:3857–3862CrossRefGoogle Scholar
  15. Hall TA (2011) Bioedit: an important software for molecular biology. GERF Bull Biosci 2:60–61Google Scholar
  16. Hamamura N, Macur RE, Korf S, Ackerman G, Taylor WP, Kozubal M, Reysenbach AL, Inskeep WP (2009) Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol 11:421–431.  https://doi.org/10.1111/j.1462-2920.2008.01781.x CrossRefPubMedGoogle Scholar
  17. Hedlund BP, McDonald A, Lam J, Dodsworth JA, Brown J, Hungate B (2011) Potential role of Thermus thermophilus and T. oshimai in high rates of nitrous oxide (N2O) production in ~ 80 °C hot springs in the US Great Basin. Geobiology 9:471–480.  https://doi.org/10.1111/j.1472-4669.2011.00295.x CrossRefPubMedGoogle Scholar
  18. Henne A, Brüggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R et al (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22:547–553CrossRefGoogle Scholar
  19. Johnson DB, Rolfe S, Hallberg KB, Iversen E (2001) Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol 3:630–637CrossRefGoogle Scholar
  20. Katoh K, Standley D (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe (III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221PubMedPubMedCentralGoogle Scholar
  22. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  23. McMurdie P, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphic of microbiome census data. PLoS ONE 8:1217.  https://doi.org/10.1371/journal.pone.0061217 CrossRefGoogle Scholar
  24. Mefferd CC, Zhou E-M, Yu T-T, Ming H, Murugapiran SK, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Ngan CY, Daum C, Duffy K, Shapiro N, Markowitz V, Ivanova N, Kyrpides N, Williams AJ, Woyke T, Li W-J, Hedlund BP (2016) High-quality draft genomes from Thermus caliditerrae YIM 77777 and T. tengchongensis YIM 77401, isolates from Tengchong. China Genome Announc 4:e00312–e316.  https://doi.org/10.1128/genomeA.00312-16 CrossRefPubMedGoogle Scholar
  25. Miller-Coleman RL, Dodsworth JA, Ross CA, Shock EL, Williams AJ, Hartnett HE, McDonald AI, Havig JR, Hedlund BP (2012) Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning. PLoS ONE 7:e35964.  https://doi.org/10.1371/journal.pone.0035964 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ming H, Yin YR, Li S, Nie GX, Yu TT, Zhou EM, Liu L, Dong L, Li WJ (2014) Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 64:650–656.  https://doi.org/10.1099/ijs.0.056838-0 CrossRefPubMedGoogle Scholar
  27. Möller C, van Heerden E (2006) Isolation of a soluble and membrane-associated Fe(III) reductase from the thermophile, Thermus scotoductus (SA-01). FEMS Microbiol Lett 265:237–243CrossRefGoogle Scholar
  28. Moser DP, Nealson KH (1996) Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol 62:2100–2105PubMedPubMedCentralGoogle Scholar
  29. Murphy CN, Dodsworth JA, Babbitt AB, Hedlund BP (2013) Community microrespirometry and molecular analyses reveal a diverse energy economy in Great Boiling Spring and Sandy's Spring West in the US. Great Basin Appl Environ Microbiol 79:3306–3310.  https://doi.org/10.1128/AEM.00139-13 CrossRefPubMedGoogle Scholar
  30. Murugapiran SK, Huntemann M, Wei CL, Han J, Detter JC, Han CS, Erkkila TH, Teshima H, Chen A, Kyrpides N, Mavrommatis K, Markowitz V, Szeto E, Ivanova N, Pagani I, Lam J, McDonald AI, Dodsworth JA, Pati A, Goodwin L, Peters L, Pitluck S, Woyke T, Hedlund BP (2013) Thermus oshimai JL-2 and T. thermophilus JL-18 genome analysis illuminates pathways for carbon, nitrogen, and sulfur cycling. Stand Genom Sci 7:449–468.  https://doi.org/10.4056/sigs.3667269 CrossRefGoogle Scholar
  31. Pan C, Banfield JF (2014) Quantitative metaproteomics: functional insights into microbial communities. Methods Mol Biol 1096:231–240.  https://doi.org/10.1007/978-1-62703-712-9_18 CrossRefPubMedGoogle Scholar
  32. Pantazaki A, Pritsa A, Kyriakidis D (2002) Biotechnologically relevant enzymes from Thermus thermophilus. Appl Microbiol Biotechnol 58:1–12.  https://doi.org/10.1007/s00253-001-0843-1 CrossRefPubMedGoogle Scholar
  33. Park CY, Klammer AA, Käll L, MacCoss MJ, Noble WS (2008) Rapid and accurate peptide identification from tandem mass spectra. J Proteome Res 7:3022–3027.  https://doi.org/10.1021/pr800127y CrossRefPubMedPubMedCentralGoogle Scholar
  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425.  https://doi.org/10.1093/oxfordjournals.molbev.a040454 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436CrossRefGoogle Scholar
  36. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Skirnisdottir S, Hreggvidsson GO, Holst O, Kristjansson JK (2001) Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus scotoductus. Extremophiles 5:45–51.  https://doi.org/10.1007/s007920000172 CrossRefPubMedGoogle Scholar
  38. Vick T, Dodsworth JA, Costa K, Shock E, Hedlund BP (2010) Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology 8:140–154.  https://doi.org/10.1111/j.1472-4669.2009.00228.x CrossRefPubMedGoogle Scholar
  39. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43CrossRefGoogle Scholar
  40. Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978CrossRefGoogle Scholar
  41. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  42. Yu TT, Yao JC, Ming H, Yin YR, Zhou EM, Liu MJ, Tang SK, Li WJ (2013) Thermus tengchongensis sp. nov., isolated from a geothermally heated soil sample in Tengchong Yunnan, south-west China. Antonie Van Leeuwenhoek 103:513–518.  https://doi.org/10.1007/s10482-012-9833-9 CrossRefPubMedGoogle Scholar
  43. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate J, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896CrossRefGoogle Scholar
  44. Zhou EM, Xian WD, Mefferd CC, Thomas SC, Adegboruwa AL, Williams N, Murugapiran SK, Dodsworth JA, Ganji R, Li MM, Ding YP, Liu L, Woyke T, Li WJ, Hedlund BP (2018) Thermus sediminis sp. nov., a thiosulfate-oxidizing and arsenate-reducing organism isolated from Little Hot Creek in the Long Valley Caldera. California Extremophiles 22:983–991.  https://doi.org/10.1007/s00792-018-1055-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • En-Min Zhou
    • 1
    • 2
    • 3
  • Arinola L. Adegboruwa
    • 3
  • Chrisabelle C. Mefferd
    • 3
  • Shrikant S. Bhute
    • 3
  • Senthil K. Murugapiran
    • 3
  • Jeremy A. Dodsworth
    • 4
  • Scott C. Thomas
    • 3
  • Amanda J. Bengtson
    • 3
    • 5
  • Lan Liu
    • 2
  • Wen-Dong Xian
    • 2
  • Wen-Jun Li
    • 2
    Email author
  • Brian P. Hedlund
    • 3
    • 6
    Email author
  1. 1.School of Resource Environment and Earth ScienceYunnan UniversityKunmingPeople’s Republic of China
  2. 2.State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  3. 3.School of Life SciencesUniversity of Nevada Las VegasLas VegasUSA
  4. 4.Department of BiologyCalifornia State UniversitySan BernardinoUSA
  5. 5.SWCA Environmental ConsultantsRenoUSA
  6. 6.Nevada Institute of Personalized MedicineUniversity of Nevada Las VegasLas VegasUSA

Personalised recommendations