Advertisement

Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing

  • Shiladitya DasSarmaEmail author
  • Priya DasSarma
  • Victoria J. Laye
  • Edward W. Schwieterman
SPECIAL FEATURE: REVIEW 12th International Congress on Extremophiles
Part of the following topical collections:
  1. 12th International Congress on Extremophiles

Abstract

Recent progress in extremophile biology, exploration of planetary bodies in the solar system, and the detection and characterization of extrasolar planets are leading to new insights in the field of astrobiology and possible distribution of life in the universe. Among the many extremophiles on Earth, the halophilic Archaea (Haloarchaea) are especially attractive models for astrobiology, being evolutionarily ancient and physiologically versatile, potentially surviving in a variety of planetary environments and with relevance for in situ life detection. Haloarchaea are polyextremophilic with tolerance of saturating salinity, anaerobic conditions, high levels of ultraviolet and ionizing radiation, subzero temperatures, desiccation, and toxic ions. Haloarchaea survive launches into Earth’s stratosphere encountering conditions similar to those found on the surface of Mars. Studies of their unique proteins are revealing mechanisms permitting activity and function in high ionic strength, perchlorates, and subzero temperatures. Haloarchaea also produce spectacular blooms visible from space due to synthesis of red–orange isoprenoid carotenoids used for photoprotection and photorepair processes and purple retinal chromoproteins for phototrophy and phototaxis. Remote sensing using visible and infrared spectroscopy has shown that haloarchaeal pigments exhibit both a discernable peak of absorption and a reflective “green edge”. Since the pigments produce remotely detectable features, they may influence the spectrum from an inhabited exoplanet imaged by a future large space-based telescope. In this review, we focus primarily on studies of two Haloarchaea, Halobacterium sp. NRC-1 and Halorubrum lacusprofundi.

Keywords

Astrobiology Biosignature Haloarchaea Phototrophy Purple membrane Retinal Polyextremophile 

Abbreviations

UV

Ultraviolet

LUCA

Last universal common ancestor

pI

Isoelectric point

HOG

Haloarchaeal orthologous group

BR

Bacteriorhodopsin

Notes

Acknowledgements

Exobiology research in the S.D. laboratory is supported by National Aeronautics and Space Administration (NASA) Grants NNX15AM07G and NNH18ZDA001N and biomedical research is supported by National Institutes of Health (NIH) grant R21 AI139808. E.S. is supported by a NASA Postdoctoral Program Fellowship, administered by the Universities Space Research Association, and by the NASA Astrobiology Institute’s Alternative Earths and Virtual Planetary Laboratory teams under Cooperative Agreement Nos. NNA15BB03A and NNA13AA93A, respectively. The Virtual Planetary Laboratory is also supported by the NASA Astrobiology Program under Grant Number 80NSSC18K0829.

References

  1. Anderson IJ, DasSarma P, Lucas S, Copeland A, Lapidus A, Del Rio TG, Tice H, Dalin E, Bruce DC, Goodwin L, Pitluck S, Sims D, Brettin TS, Detter JC, Han CS, Larimer F, Hauser L, Land M, Ivanova N, Richardson P, Cavicchioli R, DasSarma S, Woese CR, Kyrpides NC (2016) Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34. Standards in Genomic Sciences 11:1.  https://doi.org/10.1186/s40793-016-0194-2 CrossRefGoogle Scholar
  2. Armstrong GA, Alberti M, Hearst JE (1990) Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes. Proc Natl Acad Sci 87:9975–9979PubMedGoogle Scholar
  3. Baliga NS, Kennedy SP, Ng WV, Hood L, DasSarma S (2001) Genomic and genetic dissection of an archaeal regulon. Proc Natl Acad Sci 98:2521–2525PubMedGoogle Scholar
  4. Bayley H, Huang K-S, Radhakrishnan R, Ross AH, Takagaki Y, Khorana HG (1981) Site of attachment of retinal in bacteriorhodopsin. Proc Natl Acad Sci 78:2225–2229PubMedGoogle Scholar
  5. Bolcar MR, Aloezos S, Bly VT, Collins C, Crooke J, Dressing CD, Fantano L, Feinberg, LD, France, K, Gochar G, Gong Q, Hylan JE, Jones A., Linares I, Postman M, Pueyo L, Roberge A, Sacks L, Tompkins S, West G (2017) The large UV/optical/infrared surveyor (LUVOIR): decadal mission concept design update. In: MacEwen HA, Breckinridge JB (eds) Proceedings Volume 10398, UV/Optical/IR space telescopes and instruments: innovative technologies and concepts VIII. Society of Photo-Optical Instrumentation Engineers Optical Engineering + Applications 2017, p 9.  https://doi.org/10.1117/12.2273848
  6. Brandt TD, Spiegel DS (2014) Prospects for detecting oxygen, water, and chlorophyll on an exo-Earth. Proc Natl Acad Sci 111:13278–13283PubMedGoogle Scholar
  7. Britton KL, Baker PJ, Fisher M, Ruzheinikov S, Gilmour DJ, Bonete M-J, Ferrer J, Pire C, Esclapez J, Rice DW (2006) Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc Natl Acad Sci 103:4846–4851PubMedGoogle Scholar
  8. Capes MD, Coker JA, Gessler R, Grinblat-Huse V, DasSarma SL, Jacob CG, Kim J-M, DasSarma P, DasSarma S (2011) The information transfer system of halophilic archaea. Plasmid 65:77–101PubMedGoogle Scholar
  9. Capes MD, DasSarma P, DasSarma S (2012) The core and unique proteins of haloarchaea. BMC Geno 13:39Google Scholar
  10. Clark RN, Swayze GA, Wise R, Livo KE, Hoefen T, Kokaly RF, Sutley SJ (2007) USGS digital spectral library splib06a. US Geol Surv Digit Data Ser 231:2007Google Scholar
  11. Coker JA, DasSarma P, Kumar J, Müller JA, DasSarma S (2007) Transcriptional profiling of the model Archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature. Saline Syst 3:6.PubMedPubMedCentralGoogle Scholar
  12. Dalton J, Palmer-Moloney L, Rogoff D, Hlavka C, Duncan C (2009) Remote monitoring of hypersaline environments in San Francisco Bay, CA, USA. Int J Remote Sens 30:2933–2949Google Scholar
  13. Danson MJ, Hough DW (1997) The structural basis of protein halophilicity. Comp Biochem Physiol A Physiol 117:307–312Google Scholar
  14. DasSarma P, Zamora RC, Müller JA, DasSarma S (2012) Genome-wide responses of the model archaeon Halobacterium sp. strain NRC-1 to oxygen limitation. J Bacteriol 194:5530–5537PubMedPubMedCentralGoogle Scholar
  15. DasSarma P, Laye VJ, Harvey J, Reid C, Shultz J, Yarborough A, Lamb A, Koske-Phillips A, Herbst A, Molina F, Grah O, Phillips T, DasSarma S (2017) Survival of halophilic Archaea in Earth's cold stratosphere. Int J Astrobiol 16:321–327Google Scholar
  16. DasSarma P, Capes MD, DasSarma S (2019) Comparative Genomics of Halobacterium Strains from Diverse Locations. In: Das S, Dash HR (eds) Microbial diversity in the genomic era, 1st edn. Academic Press, pp 285–322.  https://doi.org/10.1016/B978-0-12-814849-5.00017-4 Google Scholar
  17. DasSarma P, Tuel K, Nierenberg SD, Phillips T, Pecher WT, DasSarma S (2016) Inquiry-driven teaching and learning using the archaeal microorganism Halobacterium NRC-1. Am Biol Teach 78:71–73Google Scholar
  18. DasSarma S (1989) Mechanisms of genetic variability in Halobacterium halobium: the purple membrane and gas vesicle mutations. Can J Microbiol 35:65–72PubMedGoogle Scholar
  19. DasSarma S, Kennedy SP, Berquist B, Ng WV, Baliga NS, Spudich JL, Krebs MP, Eisen JA, Johnson CH, Hood L (2001) Genomic perspective on the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. Photosynth Res 70:3–17PubMedGoogle Scholar
  20. DasSarma S (2004) Genome sequence of an extremely halophilic archaeon. In: Fraser C, Read T, Nelson KE (ed) Microbial Genomes C.M. Humana Press, Inc. Totowa, pp 383–399.Google Scholar
  21. DasSarma S (2006) Extreme halophiles are models for astrobiology. Microbe Am Soc Microbiol 1:120–126Google Scholar
  22. DasSarma S, Berquist BR, Coker JA, DasSarma P, Müller JA (2006) Post-genomics of the model haloarchaeon Halobacterium sp. NRC-1. Saline Syst 2:3.PubMedPubMedCentralGoogle Scholar
  23. DasSarma S (2007) Extreme microbes. Am Sci 95:224–231Google Scholar
  24. DasSarma S, Capes M, DasSarma P (2009) Haloarchaeal megaplasmids. In: Schwartz E (ed) Microbial megaplasmids. Springer, pp 3–30.  https://doi.org/10.1007/7171_2008_17
  25. DasSarma S, Capes MD, Karan R, DasSarma P (2013) Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from Antarctica. PLoS One 8:e58587PubMedPubMedCentralGoogle Scholar
  26. DasSarma S, DasSarma P (2015) Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 25:120–126PubMedPubMedCentralGoogle Scholar
  27. DasSarma S, DasSarma P (2017) Halophiles. In: Encyclopedia of life sciences. Wiley, Chichester.  https://doi.org/10.1002/9780470015902.a0000394.pub4
  28. DasSarma S, DasSarma P (2018) Survival of microbes in Earth's stratosphere. Curr Opin Microbiol.  https://doi.org/10.1016/j.mib.2017.11.002.PubMedGoogle Scholar
  29. DasSarma S, Schwieterman EW (2019) Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures. Int J Astrobiol. https://doi.org/10.1017/S1473550418000423 CrossRefGoogle Scholar
  30. de la Vega M, Sayago A, Ariza J, Barneto AG, León R (2016) Characterization of a bacterioruberin-producing Haloarchaea isolated from the marshlands of the Odiel river in the southwest of Spain. Biotechnol Prog 32:592–600.  https://doi.org/10.1002/btpr.2248 CrossRefPubMedPubMedCentralGoogle Scholar
  31. DeVeaux LC, Müller JA, Smith J, Petrisko J, Wells DP, DasSarma S (2007) Extremely radiation-resistant mutants of a halophilic archaeon with increased single-stranded DNA-binding protein (RPA) gene expression. Radiat Res 168:507–514PubMedGoogle Scholar
  32. Dummer AM, Bonsall JC, Cihla JB, Lawry SM, Johnson GC, Peck RF (2011) Bacterioopsin-mediated regulation of bacterioruberin biosynthesis in Halobacterium salinarum. J Bacteriol JB. 05376–05311.Google Scholar
  33. Esclapez J, Pire C, Bautista V, Martínez-Espinosa R, Ferrer J, Bonete M (2007) Analysis of acidic surface of Haloferax mediterranei glucose dehydrogenase by site-directed mutagenesis. FEBS Lett 581:837–842PubMedGoogle Scholar
  34. Fang C-J, Ku K-L, Lee M-H, Su N-W (2010) Influence of nutritive factors on C50 carotenoids production by Haloferax mediterranei ATCC 33500 with two-stage cultivation. Biores Technol 101:6487–6493Google Scholar
  35. Fenchel T (2002) The origin and early evolution of life. Oxford University Press, OxfordGoogle Scholar
  36. Finkel OM, Béja O, Belkin S (2013) Global abundance of microbial rhodopsins. The ISME J 7:448PubMedGoogle Scholar
  37. Fujii Y, Angerhausen D, Deitrick R, Domagal-Goldman S, Grenfell JL, Hori Y, Kane SR, Pallé E, Rauer H, Siegler N (2018) Exoplanet biosignatures: observational prospects. Astrobiology 18:739–778PubMedPubMedCentralGoogle Scholar
  38. Gates DM, Keegan HJ, Schleter JC, Weidner VR (1965) Spectral properties of plants. Appl Opt 4:11–20Google Scholar
  39. Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287PubMedGoogle Scholar
  40. Hahn J, Haug P (1986) Traces of archaebacteria in ancient sediments. Syst Appl Microbiol 7:178–183Google Scholar
  41. Hecht M, Kounaves S, Quinn R, West S, Young S, Ming D, Catling D, Clark B, Boynton W, Hoffman J, DeFlores LP, Gospodinova K, Kapit J, Smith PH (2009) Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 325:64–67PubMedGoogle Scholar
  42. Hegde S, Paulino-Lima IG, Kent R, Kaltenegger L, Rothschild L (2015) Surface biosignatures of exo-Earths: remote detection of extraterrestrial life. Proc Natl Acad Sci 112:3886–3891PubMedGoogle Scholar
  43. Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156PubMedPubMedCentralGoogle Scholar
  44. Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8:4PubMedPubMedCentralGoogle Scholar
  45. Karan R, Capes MD, DasSarma P, DasSarma S (2013) Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 13:1Google Scholar
  46. Karan R, DasSarma P, Balcer-Kubiczek E, Weng RR, Liao C-C, Goodlett DR, Ng WV, DasSarma S (2014) Bioengineering radioresistance by overproduction of RPA, a mammalian-type single-stranded DNA-binding protein, in a halophilic archaeon. Appl Microbiol Biotechnol 98:1737–1747PubMedGoogle Scholar
  47. Kennedy SP, Ng WV, Salzberg SL, Hood L, DasSarma S (2001) Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genom Res 11:1641–1650PubMedPubMedCentralGoogle Scholar
  48. Kilic V, Kilic GA, Kutlu HM, Martínez-Espinosa RM (2017) Nitrate reduction in Haloferax alexandrinus: the case of assimilatory nitrate reductase. Extremophiles 21:551–561.  https://doi.org/10.1007/s00792-017-0924-4 CrossRefPubMedGoogle Scholar
  49. Knipling EB (1970) Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens Environ 1:155–159Google Scholar
  50. Koonin EV (2015) Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos Trans R Soc Lond B Biol Sci 370:20140333.  https://doi.org/10.1098/rstb.2014.0333 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Krebs MP, Khorana HG (1993) Mechanism of light-dependent proton translocation by bacteriorhodopsin. J Bacteriol 175:1555–1560PubMedPubMedCentralGoogle Scholar
  52. Kushwaha SC, Kates M, Porter JW (1976) Enzymatic synthesis of C40 carotenes by cell-free preparation from Halobacterium cutirubrum. Can J Biochem 54:816–823PubMedGoogle Scholar
  53. Landis GA (2001) Martian water: are there extant halobacteria on mars? Astrobiology 1(2):161–164Google Scholar
  54. Laye VJ, Karan R, Kim J-M, Pecher WT, DasSarma P, DasSarma S (2017) Key amino acid residues conferring enhanced enzyme activity at cold temperatures in an Antarctic polyextremophilic β-galactosidase. Proc Natl Acad Sci 114:12530–12535.  https://doi.org/10.1073/pnas.1711542114 CrossRefPubMedGoogle Scholar
  55. Laye VJ, DasSarma S (2018) An Antarctic extreme halophile and its polyextremophilic enzyme: Effects of perchlorate salts. Astrobiology.  https://doi.org/10.1017/S1473550416000410 Google Scholar
  56. Lingam M, Loeb A (2017) Natural and artificial spectral edges in exoplanets. Monthly Notices of the Royal Astronomical Society: LettersGoogle Scholar
  57. Lissauer JJ, Dawson RI, Tremaine S (2014) Advances in exoplanet science from Kepler. Nature 513:336PubMedGoogle Scholar
  58. Mancinelli RL, Hochstein LI (1986) The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett 35:55–58PubMedGoogle Scholar
  59. Martínez-Espinosa RM, Richardson DJ, Bonete MJ (2014) Characterisation of chlorate reduction in the haloarchaeon Haloferax mediterranei. Biochim Biophys Acta 1850:587–594.  https://doi.org/10.1016/j.bbagen.2014.12.011 CrossRefPubMedGoogle Scholar
  60. McCready S (1996) The repair of ultraviolet light-induced DNA damage in the halophilic archaebacteria, Halobacterium cutirubrum, Halobacterium halobium and Haloferax volcanii. Mutat Res DNA Repair 364:25–32PubMedGoogle Scholar
  61. McCready S, Müller JA, Boubriak I, Berquist BR, Ng WL, DasSarma S (2005) UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1. Saline Syst 1:3.PubMedPubMedCentralGoogle Scholar
  62. Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D (2019) Living at the extremes: extremophiles and the limits of life in a planetary context. Front Microbiol 10:780.  https://doi.org/10.3389/fmicb.2019.00780 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Morrison D (2001) The NASA astrobiology program. Astrobiology 1:3–13PubMedGoogle Scholar
  64. Müller JA, DasSarma S (2005) Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. J Bacteriol 187:1659–1667PubMedPubMedCentralGoogle Scholar
  65. Müller WJ, Smit MS, van Heerden E, Capes MD, DasSarma S (2019) Complex effects of cytochrome P450 monooxygenase on purple membrane and bacterioruberin production in an extremely halophilic archaeon: genetic, phenotypic, and transcriptomic analyses. Front Microbiol 9:2563.  https://doi.org/10.3389/fmicb.2018.02563 CrossRefGoogle Scholar
  66. Ng WV, Ciufo SA, Smith TM, Bumgarner RE, Baskin D, Faust J, Hall B, Loretz C, Seto J, Slagel J (1998) Snapshot of a large dynamic replicon in a halophilic archaeon: megaplasmid or minichromosome? Genome Res 8:1131–1141PubMedGoogle Scholar
  67. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung K-H, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci 97:12176–12181PubMedGoogle Scholar
  68. Noffke N, Christian D, Wacey D, Hazen RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara. West Aust Astrobiol 13:1103–1124Google Scholar
  69. Peck RF, DasSarma S, Krebs MP (2000) Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol Microbiol 35:667–676PubMedGoogle Scholar
  70. Peck RF, Echavarri-Erasun C, Johnson EA, Ng WV, Kennedy SP, Hood L, DasSarma S, Krebs MP (2001) brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarum. J Biol Chem 276:5739–5744PubMedGoogle Scholar
  71. Reid I, Sparks W, Lubow S, McGrath M, Livio M, Valenti J, Sowers K, Shukla H, MacAuley S, Miller T, Suvanasuthi R, Belas R, Colman A, Robb FT, DasSarma P, Müller JA, Coker JA, Cavicchioli R, Chen F, DasSarma S (2006) Terrestrial models for extraterrestrial life: methanogens and halophiles at Martian temperatures. Int J Astrobiol 5:89–97Google Scholar
  72. Roberge A, Moustakas LA (2018) The large ultraviolet/optical/infrared surveyor. Nat Astron 2:605Google Scholar
  73. Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM (2015) Carotenoids from haloarchaea and their potential in biotechnology. Marine Drugs 13:5508–5532.  https://doi.org/10.3390/md13095508 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092PubMedGoogle Scholar
  75. Schwieterman EW, Cockell CS, Meadows VS (2015) Nonphotosynthetic pigments as potential biosignatures. Astrobiology 15:341–361PubMedPubMedCentralGoogle Scholar
  76. Schwieterman EW, Kiang NY, Parenteau MN, Harman CE, DasSarma S, Fisher TM, Arney GN, Hartnett HE, Reinhard CT, Olson SL (2018) Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobiology 18:663–708PubMedPubMedCentralGoogle Scholar
  77. Seager S, Turner EL, Schafer J, Ford EB (2005) Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5:372–390PubMedGoogle Scholar
  78. Söll D, Rajbhandary UL (2006) The genetic code-thawing the ‘frozen accident’. J Biosci 31:459–463PubMedGoogle Scholar
  79. Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN, Galinski EA, Ciordia S, Mena MC, Merkel AY, Wolf YI, van Loosdrecht MCM, Koonin EV (2019) Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nature Microbiol 2:17081.  https://doi.org/10.1038/nmicrobiol.2017.81 CrossRefGoogle Scholar
  80. Stoeckenius W, Bogomolni RA (1982) Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem 51:587–616PubMedGoogle Scholar
  81. Sumper M, Reitmeier H, Oesterhelt D (1976) Biosynthesis of the purple membrane of halobacteria. Angew Chem Int Ed Engl 15:187–194PubMedGoogle Scholar
  82. Walker SI, Bains W, Cronin L, DasSarma S, Danielache S, Domagal-Goldman S, Kacar B, Kiang NY, Lenardic A, Reinhard CT (2018) Exoplanet biosignatures: future directions. Astrobiology 18:779–824PubMedPubMedCentralGoogle Scholar
  83. Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasSarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194PubMedPubMedCentralGoogle Scholar
  84. Yang Y, Yatsunami R, Ando A., Miyoko N, Fukui T, Takaichi S, Nakamura S (2015) Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. J Bacteriol JB 02523–02514.Google Scholar
  85. Yang CF, Kim JM, Molinari E, DasSarma S (1996) Genetic and topological analyses of the bop promoter of Halobacterium halobium: stimulation by DNA supercoiling and non-B-DNA structure. J Bacteriol 178:840–845PubMedPubMedCentralGoogle Scholar
  86. Yim KJ, Kwon J, Cha IT, Oh KS, Song HS, Lee HW, Rhee JK, Song EJ, Rho JR, Seo ML, Choi JS, Choi HJ, Lee SJ, Nam YD, Roh SW (2015) Occurrence of viable, red-pigmented haloarchaea in the plumage of captive flamingoes. Sci Rep 5:16425.  https://doi.org/10.1038/srep16425 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Shiladitya DasSarma
    • 1
    Email author
  • Priya DasSarma
    • 1
  • Victoria J. Laye
    • 1
  • Edward W. Schwieterman
    • 2
  1. 1.Institute of Marine and Environmental TechnologyUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Department of Earth and Planetary SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations