Advertisement

Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive

  • Sondes Mechri
  • Khelifa Bouacem
  • Nadia Zaraî Jaouadi
  • Hatem Rekik
  • Mouna Ben Elhoul
  • Maroua Omrane Benmrad
  • Hocine Hacene
  • Samir Bejar
  • Amel Bouanane-Darenfed
  • Bassem JaouadiEmail author
Original Paper
  • 27 Downloads

Abstract

A thermostable extracellular alkaline protease (called SAPA) was produced (4600 U/mL) by Anoxybacillus kamchatkensis M1V, purified to homogeneity, and biochemically characterized. SAPA is a monomer with a molecular mass of 28 kDa estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Native-PAGE, casein-zymography, and size exclusion using high performance liquid chromatography (HPLC). The sequence of its NH2-terminal amino-acid residues showed high homology with those of Bacillus proteases. The SAPA irreversible inhibition by diiodopropyl fluorophosphates (DFP) and phenylmethanesulfonyl fluoride (PMSF) confirmed its belonging to the serine proteases family. Optimal activity of SAPA was at pH 11 and 70 °C. The sapA gene was cloned and expressed in the extracellular fraction of E. coli. The highest sequence identity value (95%) of SAPA was obtained with peptidase S8 from Bacillus subtilis WT 168, but with 16 amino-acids of difference. The biochemical characteristics of the purified recombinant extracellular enzyme (called rSAPA) were analogous to those of native SAPA. Interestingly, rSAPA exhibit a degree of hydrolysis that were 1.24 and 2.6 than SAPB from Bacillus pumilus CBS and subtilisin A from Bacillus licheniformis, respectively. Furthermore, rSAPA showed a high detergent compatibility and an outstanding stain removal capacity compared to commercial enzymes: savinase™ 16L, type EX and alcalase™ Ultra 2.5 L.

Graphic Abstract

Highlights

  • A new extracellular Anoxybacillus kamchatkensis protease was purified (SAPA) and characterized.

  • SAPA was a serine protease and a monomer with a molecular mass of ∼28 kDa.

  • Optimum pH and temperature values for activity were pH 11 and 70 °C, respectively.

  • The sapA gene encoding SAPA was cloned, sequenced, and expressed in E. coli.

  • rSAPA is a potential candidate for future application as laundry detergent additive.

Keywords

Anoxybacillus kamchatkensis Hot spring Protease Expression Detergent 

Notes

Acknowledgements

The authors would like to thank Mrs. N. Masmoudi, Mrs. N. Kchaou, and Mr. K. Walha (Analysis Unit-CBS) for their technical help. They would also like to express their gratitude to Pr. Ali Gargouri, Pr. H. Belghith, and Dr. W. Saibi (CBS) for their helpful suggestions and discussions; and Pr. W. Hariz from the English Department at the Sfax Faculty of Sciences, University of Sfax, Tunisia for language editing services and constructive proofreading.

Author contributions

All authors cited, have made intellectual, substantial, and direct participation to the work, and approved it for publication.

Funding

This study was supported by the Ministry of Higher Education and Scientific Research in Tunisian under the contract program LMBEE-CBS/code: LR15CBS06_2015-2019.

Compliance with ethical standards

Conflict of interest

Authors Nadia Zaraî Jaouadi, Hatem Rekik, Mouna Ben Elhoul, Samir Bejar, and Bassem Jaouadi were employed by company (Biotech ECOZYM Start-up, Business Incubator at the CBS). All other authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

792_2019_1123_MOESM1_ESM.docx (2.9 mb)
Supplementary file1 (DOCX 2986 kb)

References

  1. Abe J, Onitsuka N, Nakano T, Shibata Y, Hizukuri S, Entani E (1994) Purification and characterization of periplasmic alpha-amylase from Xanthomonas campestris K-11151. J Bacteriol 176:3584–3588CrossRefGoogle Scholar
  2. Adler-Nissen J (1986) Methods in food protein hydrolysis. Enzymatic hydrolysis of food proteins. Elsevier Applied Science Publishers Ltd, London, pp 110–130Google Scholar
  3. Agrebi R, Haddar A, Hmidet N, Jellouli K, Manni L, Nasri M (2009) BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: purification, biochemical and molecular characterization. Process Biochem 44:1252–1259CrossRefGoogle Scholar
  4. Bandyopadhyay S, Schumann P, Das SK (2013) Pannonibacter indica sp. nov., a highly arsenate-tolerant bacterium isolated from a hot spring in India. Arch Microbiol 195:1–8CrossRefGoogle Scholar
  5. Baweja M, Nain L, Kawarabayasi Y, Shukla P (2016a) Current technological improvements in enzymes toward their biotechnological applications. Front Microbiol 7:965Google Scholar
  6. Baweja M, Tiwari R, Singh PK, Nain L, Shukla P (2016b) An alkaline protease from Bacillus pumilus MP 27: Functional analysis of its binding model toward its applications as detergent additive. Front Microbiol 7:1195Google Scholar
  7. Baweja M, Singh PK, Sadaf A, Tiwari R, Nain L, Khare SK, Shukla P (2017) Cost effective characterization process and molecular dynamic simulation of detergent compatible alkaline protease from Bacillus pumilus strain MP27. Process Biochem 58:199–203CrossRefGoogle Scholar
  8. Beg QK, Gupta R (2003) Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme Microb Technol 32:294–304CrossRefGoogle Scholar
  9. Ben Elhoul M, Zaraî Jaouadi N, Rekik H, Omrane Benmrad M, Mechri S, Moujehed E, Kourdali S, El Hattab M, Badis A, Bejar S, Jaouadi B (2016) Biochemical and molecular characterization of new keratinoytic protease from Actinomadura viridilutea DZ50. Int J Biol Macromol 92:299–315CrossRefGoogle Scholar
  10. Benkiar A, Zaraî Jaouadi N, Badis A, Rebzani F, Boulkour Touioui S, Rekik H, Naili B, Ferradji FZ, Bejar S, Jaouadi B (2013) Biochemical and molecular characterization of a thermo-and detergent-stable alkaline serine keratinolytic protease from Bacillus circulans strain DZ100 for detergent formulations and feather-biodegradation process. Int Biodeter Biodegr 83:129–138CrossRefGoogle Scholar
  11. Bouacem K, Bouanane-Darenfed A, Laribi-Habchi H, Ben Elhoul M, Hmida-Sayari A, Hacene H, Ollivier B, Fardeau ML, Jaouadi B, Bejar S (2015) Biochemical characterization of a detergent-stable serine alkaline protease from Caldicoprobacter guelmensis. Int J Biol Macromol 81:299–307CrossRefGoogle Scholar
  12. Bouacem K, Bouanane-Darenfed A, Zaraî Jaouadi N, Joseph M, Hacene H, Ollivier B, Fardeau ML, Bejar S, Jaouadi B (2016) Novel serine keratinase from Caldicoprobacter algeriensis exhibiting outstanding hide dehairing abilities. Int J Biol Macromol 86:321–328CrossRefGoogle Scholar
  13. Bouacem K, Laribi-Habchi H, Mechri S, Hacene H, Jaouadi B, Bouanane-Darenfed A (2018) Biochemical characterization of a novel thermostable chitinase from Hydrogenophilus hirschii strain KB-DZ44. Int J Biol Macromol 106:338–350CrossRefGoogle Scholar
  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  15. Chalamaiah M, Yu W, Wu J (2018) Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: a review. Food Chem 245:205–222CrossRefGoogle Scholar
  16. Coman C, Drugă B, Hegedus A, Sicora C, Dragoş N (2013) Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania. Extremophiles 17:523–534CrossRefGoogle Scholar
  17. Curci N, Strazzulli A, De Lise F, Iacono R, Maurelli L, Dal Piaz F, Cobucci-Ponzano B, Moracci M (2019) Identification of a novel esterase from the thermophilic bacterium Geobacillus thermodenitrificans NG80–2. Extremophiles 1–13Google Scholar
  18. Damodaran S, Han X-Q (1999) Detergent-stable alkaline protease from Bacillus pumilus. United States Patent Number: US5976859Google Scholar
  19. DeCastro ME, Rodríguez-Belmonte E, González-Siso MI (2016) Metagenomics of thermophiles with a focus on discovery of novel thermozymes. Front Mcrobiol 7:1521Google Scholar
  20. Deep K, Poddar A, Das SK (2013) Anoxybacillus suryakundensis sp. nov, a moderately thermophilic, alkalitolerant bacterium isolated from hot spring at Jharkhand, India. PLoS ONE 8:e85493CrossRefGoogle Scholar
  21. DelMar EG, Largman C, Brodrick JW, Geokas MC (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320CrossRefGoogle Scholar
  22. Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119CrossRefGoogle Scholar
  23. Ghafoori H, Askari M, Sarikhan S (2016) Purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis (X5B). Extremophiles 20:115–123CrossRefGoogle Scholar
  24. Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, Illias RM, Chan K-G (2013) Recent discoveries and applications of Anoxybacillus. Appl Microbiol Biotechnol 97:1475–1488CrossRefGoogle Scholar
  25. Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31:3320–3323CrossRefGoogle Scholar
  26. Graminho ER, da Silva RR, de Freitas Cabral TP, Arantes EC, da Rosa NG, Juliano L, Okamoto DN, de Oliveira LC, Kondo MY, Juliano MA, Cabral H (2013) Purification, characterization, and specificity determination of a new serine protease secreted by Penicillium waksmanii. Appl Biochem Biotechnol 169:201–214CrossRefGoogle Scholar
  27. Gurtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142:3–16CrossRefGoogle Scholar
  28. Haddar A, Agrebi R, Bougatef A, Hmidet N, Sellami-Kamoun A, Nasri M (2009) Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresour Technol 100:3366–3373CrossRefGoogle Scholar
  29. Hadjidj R, Badis A, Mechri S, Eddouaouda K, Khelouia L, Annane R, El Hattab M, Jaouadi B (2018) Purification, biochemical, and molecular characterization of novel protease from Bacillus licheniformis strain K7A. Int J Biol Macromol 114:1033–1048CrossRefGoogle Scholar
  30. Hamiche S, Mechri S, Khelouia L, Annane R, El Hattab M, Badis A, Jaouadi B (2019) Purification and biochemical characterization of two keratinases from Bacillus amyloliquefaciens S13 isolated from marine brown alga Zonaria tournefortii with potential keratin-biodegradation and hide-unhairing activities. Int J Biol Macromol 122:758–769CrossRefGoogle Scholar
  31. Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, Huang Q, Huang L, Wu G, Zhi X (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS ONE 8:e53350CrossRefGoogle Scholar
  32. Inan K, Belduz AO, Canakci S (2013) Anoxybacillus kaynarcensis sp. nov., a moderately thermophilic, xylanase producing bacterium. J Basic Microbiol 53:410–419CrossRefGoogle Scholar
  33. Iqbal I, Aftab MN, Afzal M, Ur-Rehman A, Aftab S, Zafar A, Ud-Din Z, Khuharo AR, Iqbal J, Ul Haq I (2015) Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus. J Basic Microbiol 55:160–171CrossRefGoogle Scholar
  34. Jacobs M, Eliasson M, Uhlén M, Flock J I (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis Nucleic Acids Res 13:8913–8926Google Scholar
  35. Jain SC, Shinde U, Li Y, Inouye M, Berman HM (1998) The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 Å resolution. J Mol Biol 284:137–144CrossRefGoogle Scholar
  36. Jaouadi B, Ellouz-Chaabouni S, Rhimi M, Bejar S (2008) Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90:1291–1305CrossRefGoogle Scholar
  37. Joo HS, Ra K, Park H, Choi J (2013) Molecular cloning and functional expression of a fibrinolytic protease gene from the polychaeta, Periserrula leucophryna. Biotechnol Bioprocess Eng 18:209–217CrossRefGoogle Scholar
  38. Kumar A, Alam A, Tripathi D, Rani M, Khatoon H, Pandey S, Ehtesham NZ, Hasnain SE (2018) Protein adaptations in extremophiles: an insight into extremophilic connection of mycobacterial proteome. Semin Cell Dev Biol 84:147–157CrossRefGoogle Scholar
  39. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  40. Mechri S, Ben Elhoul Berrouina M, Benmrad MO, Zaraî Jaouadi N, Rekik H, Moujehed E, Chebbi A, Sayadi S, Chamkha M, Bejar S (2017a) Characterization of a novel protease from Aeribacillus pallidus strain VP3 with potential biotechnological interest. Int J Biol Macromol 94:221–232CrossRefGoogle Scholar
  41. Mechri S, Kriaa M, Ben Elhoul Berrouina M, Omrane Benmrad M, Zaraî Jaouadi N, Rekik H, Bouacem K, Bouanane-Darenfed A, Chebbi A, Sayadi S, Chamkha M, Bejar S, Jaouadi B (2017b) Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol 101:383–397CrossRefGoogle Scholar
  42. Mechri S, Bouacem K, Jabeur F, Mohamed S, Addou NA, Dab A, Bouraoui A, Bouanane Darenfed A, Bejar S, Hacene H, Baciou L, Lederer F, Jaouadi B (2019) Purification and biochemical characterization of a novel thermostable and halotolerant subtilisin SAPN, a serine protease from Melghiribacillus thermohalophilus Nari2AT for chitin extraction from crab and shrimp shell by-products. Extremophiles 1–19Google Scholar
  43. Muthu S, Gopal VB, Soundararajan S, Nattarayan K, Narayan SK, Lakshmikanthan M, Malairaj S, Perumal P (2017) Antibacterial serine protease from Wrightia tinctoria: purification and characterization. Plant Physiol Biochem 112:161–172CrossRefGoogle Scholar
  44. Nirmal NP, Laxman RS (2014) Enhanced thermostability of a fungal alkaline protease by different additives. Enzyme Res 2014Google Scholar
  45. Ogawa A, Sumitomo N, Okuda M, Saeki K, Kawai S, Kobayashi T, Ito S (2003) Nucleotide and deduced amino acid sequences of a high-molecular-mass subtilisin from an alkaliphilic Bacillus isolate. Biochim Biophys Acta Gen Subjects 1624:109–114CrossRefGoogle Scholar
  46. Omrane Benmrad M, Mechri S, Zaraî Jaouadi N, Ben Elhoul M, Rekik H, Sayadi S, Bejar S, Kechaou N, Jaouadi B (2019) Purification and biochemical characterization of a novel thermostable protease from the oyster mushroom Pleurotus sajor-caju strain CTM10057 with industrial interest. BMC Biotechnol 19:43CrossRefGoogle Scholar
  47. Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, Luis A (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530CrossRefGoogle Scholar
  48. Panda SK, Jyoti V, Bhadra B, Nayak KC, Shivaji S, Rainey FA, Das SK (2009) Thiomonas bhubaneswarensis sp. nov., an obligately mixotrophic, moderately thermophilic, thiosulfate-oxidizing bacterium. Int J Syst Evol Microbiol 59:2171–2175CrossRefGoogle Scholar
  49. Pikuta E, Lysenko A, Chuvilskaya N, Mendrock U, Hippe H, Suzina N, Nikitin D, Osipov G, Laurinavichius K (2000) Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavitherms comb. nov. Int J Syst Evol Microbiol 50:2109–2117CrossRefGoogle Scholar
  50. Rekik H, Frikha F, Zaraî Jaouadi N, Gargouri F, Jmal N, Bejar S, Jaouadi B (2019a) Gene cloning, expression, molecular modeling and docking study of the protease SAPRH from Bacillus safensis strain RH12. Int J Biol Macromol 125:876–891CrossRefGoogle Scholar
  51. Rekik H, Zaraî Jaouadi N, Gargouri F, Bejar W, Frikha F, Jmal N, Bejar S, Jaouadi B (2019b) Production, purification and biochemical characterization of a novel detergent-stable serine alkaline protease from Bacillus safensis strain RH12. Int J Biol Macromol 121:1227–1239CrossRefGoogle Scholar
  52. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon AL, Xiang H, Gusti V, Clausen IG (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5:r77CrossRefGoogle Scholar
  53. Sarath G, De La Motte RS, Wahner FW (1989) Protease assay methods. In: Beynon RJ, Bond JS (eds) Proteolytic enzymes, a practical approach. Oxford University Press, Oxford, pp 25–55Google Scholar
  54. Savitha S, Sadhasivam S, Swaminathan K, Lin FH (2011) Fungal protease: production, purification and compatibility with laundry detergents and their wash performance. J Taiwan Inst Chem E 42:298–304CrossRefGoogle Scholar
  55. Siezen RJ, Leunissen JA (1997) Subtilases: The superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523CrossRefGoogle Scholar
  56. Souza PMd, Bittencourt MLdA, Caprara CC, Freitas Md, Almeida RPCd, Silveira D, Fonseca YM, Ferreira Filho EX, Pessoa Junior A, Magalhães PO (2015) A biotechnology perspective of fungal proteases. Braz J Microbiol 46:337–346CrossRefGoogle Scholar
  57. Takagi H, Maeda T, Ohtsu I, Tsai YC, Nakamori S (1996) Restriction of substrate specificity of subtilisin E by introduction of a side chain into a conserved glycine residue. FEBS Lett 395:127–132CrossRefGoogle Scholar
  58. Tavano OL (2013) Protein hydrolysis using proteases: An important tool for food biotechnology. J Mol Catal B: Enzym 90:1–11CrossRefGoogle Scholar
  59. Toplak A, Nuijens T, Quaedflieg PJLM, Wu B, Janssen DB (2015) Peptide synthesis in neat organic solvents with novel thermostable proteases. Enzyme Microb Technol 73–74:20–28CrossRefGoogle Scholar
  60. Vetter R, Wilke D, Möller B, Lerch M, Mücke I, Takenberg M, Konieczny janda G (2003) Alkaline proteases from Bacillus pumilus. Genencor International, INC. (925 Page Mill Road, Palo Alto, California, 94304. USA. European Patent Number: EP0572992 B1Google Scholar
  61. Vojcic L, Pitzler C, Körfer G, Jakob F, Ronny M, Maurer KH, Schwaneberg U (2015) Advances in protease engineering for laundry detergents. New Biotech 32:629–634CrossRefGoogle Scholar
  62. Walsh KA (1970) Trypsinogens and trypsins of varoius species. Meth Enzymol 19:41–63CrossRefGoogle Scholar
  63. Zaraî Jaouadi N, Jaouadi B, Aghajari N, Bejar S (2012) The overexpression of the SAPB of Bacillus pumilus CBS and mutated sapB-L31I/T33S/N99Y alkaline proteases in Bacillus subtilis DB430: New attractive properties for the mutant enzyme. Bioresour Technol 105:142–151CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Sondes Mechri
    • 1
  • Khelifa Bouacem
    • 1
    • 3
  • Nadia Zaraî Jaouadi
    • 1
    • 2
  • Hatem Rekik
    • 1
    • 2
  • Mouna Ben Elhoul
    • 1
    • 2
  • Maroua Omrane Benmrad
    • 1
  • Hocine Hacene
    • 3
  • Samir Bejar
    • 1
    • 2
  • Amel Bouanane-Darenfed
    • 3
  • Bassem Jaouadi
    • 1
    • 2
    Email author
  1. 1.Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS)University of SfaxSfaxTunisia
  2. 2.Biotech ECOZYM Start-Up, Business Incubator, Centre of Biotechnology of Sfax (CBS)University of SfaxSfaxTunisia
  3. 3.Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological SciencesUniversity of Sciences and Technology of Houari Boumediene (USTHB)Bab EzzouarAlgeria

Personalised recommendations