, Volume 23, Issue 5, pp 557–568 | Cite as

Aspergillus loretoensis, a single isolate from marine sediment of Loreto Bay, Baja California Sur, México resulting as a new obligate halophile species

  • Sophia González-Martínez
  • Clara Galindo-Sánchez
  • Edgar López-Landavery
  • Carmen Paniagua-Chávez
  • Amelia Portillo-LópezEmail author
Original Paper


An obligate halophile fungal was isolated from 275 m deep marine sediments and is characterized here for the first time. Its optimal growth was at 15% NaCl even though it was able to grow at 25% and is incapable of growth with no NaCl. Based on its morphological characteristics as conidia chain production in a single phialide, the fungal is related to the genus Aspergillus, subgenus Polypaecilum. Phylogenetic molecular analysis using several markers (ITS1–2; RPB1; RPB2; Cct8; TSR1; CaM; BenA) places the fungal isolate closer to Aspergillus salinarus and A. baarnensis. However, its morphological and molecular differences establish it as a new species, Aspergillus loretoensis sp. nov.


Ascomycota Extremophile fungi Salt tolerance Marine fungi Micromycetes 



Yeast, peptone, dextrose media


Bovine serum albumin


Genbank accession number





We thank Consejo Nacional de Ciencia y Tecnología for their support with the Ph.D. scholarship. We are grateful to Universidad Autónoma de Baja California and Centro de Investigaciones Científicas y de Educación Superior de Ensenada to allow us to use their facilities.


  1. Agrawal T, Kotasthane AS (2012) Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in central India. Springerplus 1:1–10. CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. CrossRefGoogle Scholar
  3. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120. CrossRefGoogle Scholar
  4. Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. R Soc 265:1461–1465. CrossRefGoogle Scholar
  5. Claus W (1989) Understanding microbes. W. H. Freeman and Company, New YorkGoogle Scholar
  6. Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J et al (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59:1–10. CrossRefGoogle Scholar
  7. González-Martínez S, Soria I, Ayala N, Portillo-López A (2017) Culturable halotolerant fungal isolates from Southern California Gulf sediments. Open Agric 2:292–299. Google Scholar
  8. Grabherr M, Haas B, Yassour M, Levin JZ, Thompson DA et al (2013) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29:644–652. CrossRefGoogle Scholar
  9. Greiner K, Peršoh D, Weig A, Rambold G (2014) Phialosimplex salinarum, a new species of Eurotiomycetes from a hypersaline habitat. IMA Fungus 5:161–172. CrossRefGoogle Scholar
  10. Gunde-Cimerman N, Zalar P, De Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240. Google Scholar
  11. Houbraken J, De Vries RP, Samson RA (2014) Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol 86:199–249. CrossRefGoogle Scholar
  12. Hsieh HM, Ju YM, Hsueh PR, Lin HY, Hu FR et al (2009) Fungal keratitis caused by a new filamentous hyphomycete Sagenomella keratitidis. Bot Stud 50:331–335. Google Scholar
  13. Johan-Olsen O (1887) Om sop på klipfisk den såkaldte mid. Christ Vidensk Forh 12:3–20Google Scholar
  14. Kocsubé S, Perrone G, Magistà D et al (2016) Aspergillus is monophyletic: evidence from multiple gene phylogenies and extrolites profiles. Stud Mycol 85:199–213. CrossRefGoogle Scholar
  15. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. CrossRefGoogle Scholar
  16. Kunčič MK, Kogej T, Drobne D, Gunde-Cimerman N (2010) Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol 76:329–337. CrossRefGoogle Scholar
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. CrossRefGoogle Scholar
  18. Madigan M, Martinko J, Bender K, Buckley DH, Stahl DA (2015) Brock biology of microorganisms, 14th edn. Pearson, New YorkGoogle Scholar
  19. Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28. CrossRefGoogle Scholar
  20. Martinelli L, Zalar P, Gunde-Cimerman N, Azua-Bustos A, Sterflinger K et al (2017) Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a Phialosimplex-like morphology. Extremophiles 21:755–773. CrossRefGoogle Scholar
  21. Michiels A, Van den Ende W, Tucker M, Van Riet L, Van Laere A (2003) Extraction of high-quality genomic DNA from latex-containing plants. Anal Biochem 315:85–89. CrossRefGoogle Scholar
  22. National Center for Biotechnology Information (2019) NCBI. Accessed 1 May 2019
  23. Nazareth S, Gonsalves V, Nayak S (2012) A first record of obligate halophilic aspergilli from the Dead Sea. Indian J Microbiol 52:22–27. CrossRefGoogle Scholar
  24. Pitt JI (1975) Xerophilic fungi and the spoilage of food of plant origin. In: Duckworth RB (ed) Water relations of foods. Academic press, New York, pp 273–307CrossRefGoogle Scholar
  25. Pitt JI, Hocking AD (1985) New species of fungi form Indonesian dried fish. Micotaxon 22:197–208Google Scholar
  26. Pitt JI, Hocking AD (2009) Xerophiles. In: Fungi and food spoilage, 3rd edn. Springer, pp 339–355.
  27. Pointing SB (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33Google Scholar
  28. Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V et al (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173. CrossRefGoogle Scholar
  29. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA 109:6241–6246. CrossRefGoogle Scholar
  30. Sigler L, Sutton DA, Gibas CFC, Summerbell RC, Noel RK et al (2010) Phialosimplex, a new anamorphic genus associated with infections in dogs and having phylogenetic affinity to the Trichocomaceae. Med Mycol 48:335–345. CrossRefGoogle Scholar
  31. Sklenář F, Jurjević Z, Zalar P, Frisvad JC, Visagie CM et al (2017) Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section restricti. Stud Mycol 88:161–236. CrossRefGoogle Scholar
  32. Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S (2016) TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res 26:1134–1144. CrossRefGoogle Scholar
  33. Tanney JB, Visagie CM, Yilmaz N, Seifert KA (2017) Aspergillus subgenus Polypaecilum from the built environment. Stud Mycol 88:237–267. CrossRefGoogle Scholar
  34. Trigiano R, Ament M (2004) Detecting and measuring extracellular enzymes of fungi and bacteria. In: Trigiano R, Windham M, Windham A (eds) Plant pathology. CRC, New York, pp 247–259Google Scholar
  35. Washington University (2018) SQL share: uniprot-reviewed-annotations_041017Google Scholar
  36. Wheeler KA, Hocking AD, Pitt JI, Anggawati AM (1986) Fungi associated with Indonesian dried fish. Food Microbiol 3:351–357. CrossRefGoogle Scholar
  37. Wheeler KA, Hocking AD, Pitt JI (1988) Influence of temperature on the water relations of Polypaecilum pisce and Basipetospora halophila, two halophilic fungi. J Gen Microbiol 134:2255–2260. Google Scholar
  38. Wingett SW, Andrews S (2018) FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res 7:1338. CrossRefGoogle Scholar
  39. Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimermana N (2014) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80:247–256. CrossRefGoogle Scholar
  40. Zalar P, Sybren de Hoog G, Schroers HJ, Frank JM, Gunde-Cimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek 87:311–328. CrossRefGoogle Scholar
  41. Zhou N, Zhang Y, Liu F, Cai L (2016) Halophilic and thermotolerant Gymnoascus species from several special environments, China. Mycologia 108:179–191. CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de CienciasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico
  2. 2.Centro de Investigación Científica y de Educación Superior de EnsenadaEnsenadaMexico

Personalised recommendations