Advertisement

Extremophiles

, Volume 23, Issue 4, pp 367–376 | Cite as

Eukaryotic organisms of continental hydrothermal systems

  • Sabrina R. BrownEmail author
  • Sherilyn C. Fritz
Review

Abstract

Continental hydrothermal systems are a dynamic component of global thermal and geochemical cycles, exerting a pronounced impact on water chemistry and heat storage. As such, these environments are commonly classified by temperature, thermal fluid ionic concentration, and pH. Terrestrial hydrothermal systems are a refuge for extremophilic organisms, as extremes in temperature, metal concentration, and pH profoundly impact microorganism assemblage composition. While numerous studies focus on Bacteria and Archaea in these environments, few focus on Eukarya—likely due to lower temperature tolerances and because they are not model organisms for understanding the evolution of early life. However, where present, eukaryotic organisms are significant members of continental hydrothermal microorganism communities. Thus, this manuscript focuses on the eukaryotic occupants of terrestrial hydrothermal systems and provides a review of the current status of research, including microbe–eukaryote interactions and suggestions for future directions.

Keywords

Eukaryotes Thermophiles Acidophiles Alkaliphiles Geothermal 

Notes

Acknowledgements

The authors thank the anonymous reviewer for providing valuable feedback for improving the breadth of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aguilera Á (2013) Eukaryotic organisms in extreme acidic environments, the Río Tinto Case. Life 3:363–374.  https://doi.org/10.3390/life3030363 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aguilera A, Souza-Egipsy V, Gómez F, Amils R (2007) Development and atructure of eukaryotic biofilms in an extreme acidic environment, Río Tinto (SW, Spain). Microb Ecol 53:294–305.  https://doi.org/10.1007/s00248-006-9092-2 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aguilera Á, Souza-Egipsy V, González-Toril E et al (2010) Eukaryotic microbial diversity of phototrophic microbial mats in two Icelandic geothermal hot springs. Int Microbiol 13:21–32.  https://doi.org/10.2436/20.1501.01.108 CrossRefPubMedGoogle Scholar
  4. Amaral-Zettler LA (2013) Eukaryotic diversity at pH extremes. Front Microbiol 3:1–17.  https://doi.org/10.3389/fmicb.2012.00441 CrossRefGoogle Scholar
  5. Badirzadeh A, Niyyati M, Babaei Z et al (2011) Isolation of free-living amoebae from sarein hot springs in ardebil province, Iran. Iran J Parasitol 6:1–7PubMedPubMedCentralGoogle Scholar
  6. Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75:2192–2199.  https://doi.org/10.1128/AEM.02500-08 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baumgartner M, Yapi A, Gröbner-Ferreira R, Stetter KO (2003) Cultivation and properties of Echinamoeba thermarum n. sp., an extremely thermophilic amoeba thriving in hot springs. Extremophiles 7:267–274.  https://doi.org/10.1007/s00792-003-0319-6 CrossRefPubMedGoogle Scholar
  8. Baumgartner M, Eberhardt S, De Jonckheere JF, Stetter KO (2009) Tetramitus thermacidophilius nov. sp., an amoeboflagellate from acidic hot springs. J Eukaryot Microbiol 56:201–206PubMedCrossRefGoogle Scholar
  9. Blank CE, Cady SL, Pace NR (2002) Microbial composition of near-neutral silica-depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 1:703–718Google Scholar
  10. Bodvarsson GS (1982) Mathematical modeling of the behavior of geothermal systems under exploitation. Dissertation, University of California-BerkeleyGoogle Scholar
  11. Bolhuis H, Cretoiu MS, Stal LJ (2014) Molecular ecology of microbial mats. Fed Eur Microbiol Soc Microb Ecol 90:335–350.  https://doi.org/10.1111/1574-6941.12408 CrossRefGoogle Scholar
  12. Bonny S, Jones B (2003) Relict tufa at Miette Hot Springs, Jasper National Park, Alberta, Canada. Can J Earth Sci 40:1459–1481.  https://doi.org/10.1139/e03-050 CrossRefGoogle Scholar
  13. Bottjer DJ (2005) Geobiology and the fossil record: eukaryotes, microbes, and their interactions. Palaeogeogr Palaeoclimatol Palaeoecol 219:5–21.  https://doi.org/10.1016/j.palaeo.2004.10.011 CrossRefGoogle Scholar
  14. Brock TD (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science (80-) 179:480–483CrossRefGoogle Scholar
  15. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New YorkCrossRefGoogle Scholar
  16. Brock TD, Boylen KL (1973) Presence of thermophilic bacteria in laundry and domestic hot-water heaters. Appl Microbiol 25:72–76PubMedPubMedCentralGoogle Scholar
  17. Brown PB, Wolfe GV (2006) Protist genetic diversity in the acidic hydrothermal environments of Lassen Volcanic National Park, USA. J Eukaryot Microbiol 53:420–431.  https://doi.org/10.1111/j.1550-7408.2006.00125.x CrossRefPubMedPubMedCentralGoogle Scholar
  18. Canganella F, Wiegel J (2011) Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 98:253–279.  https://doi.org/10.1007/s00114-011-0775-2 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Casamayor EO, Triadó-Margarit X, Castañeda C (2013) Microbial biodiversity in saline shallow lakes of the Monegros Desert, Spain. FEMS Microbiol Ecol 85:503–518.  https://doi.org/10.1111/1574-6941.12139 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ciniglia C, Yoon HS, Pollio A et al (2004) Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol Ecol 13:1827–1838.  https://doi.org/10.1111/j.1365-294X.2004.02180.x CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cocquyt C (1999) Diatoms from a hot spring in Lake Tanganyika. Nov Hedwigia 68:425–439Google Scholar
  22. Cohen AS (2003) Paleolimnology. Oxford University Press, OxfordGoogle Scholar
  23. Costas E, Flores-Moya A, Perdigones N et al (2007) How eukaryotic algae can adapt to the Spain’s Rio Tinto: a neo-Darwinian proposal for rapid adaptation to an extremely hostile ecosystem. New Phytol 175:334–339.  https://doi.org/10.1111/j.1469-8137.2007.02095.x CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cowan D, Tuffin M, Mulako I, Cass J (2012) Terrestrial Hydrothermal environments. In: Bell E (ed) Life at extremes: environments, organisms, and strategies for survival. CABI, Oxfordshire, pp 219–241CrossRefGoogle Scholar
  25. DeNicola DM (2000) A review of diatoms found in highly acidic environments. Hydrobiologia 433:111–122CrossRefGoogle Scholar
  26. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev 2:95–108.  https://doi.org/10.1038/nrmicro821 CrossRefGoogle Scholar
  27. Hecky RE, Kilham P (1973) Diatoms in alkaline, saline lakes: ecology and geochemical implications. Limnol Oceanogr 18:53–71CrossRefGoogle Scholar
  28. Horikoshi K (2016) Extremophiles where it all began. Springer, TokyoGoogle Scholar
  29. Horikoshi K, Grant WD (eds) (1998) Extremophiles: microbial life in extreme environments. Wiley-Liss, New YorkGoogle Scholar
  30. Horikoshi K, Antranikian G, Bull AT et al (2011) Extremophiles handbook. Springer, TokyoCrossRefGoogle Scholar
  31. Idei M, Mayama S (2001) Pinnularia acidojaponica M. Idei et H. Kobayasi sp. nov. and P. valdetolerans Mayama et H. Kobayasi sp. nov.—new diatom taxa from Japanese extreme environments. In: Jahn R, Kociolek JP, Witkowski A, Compere P (eds) Lange–Bertalot–Festschrift. Gantner, Ruggell, pp 265–277Google Scholar
  32. Jones B, Renaut RW, Rosen MR (1997) Biogenicity of silica precipitation around geysers and hot-spring vents, North Island, New Zealand. J Sediment Res 67:88–104Google Scholar
  33. Kao PM, Hsu BM, Chen NH et al (2012) Isolation and identification of Acanthamoeba species from thermal spring environments in southern Taiwan. Exp Parasitol 130:354–358.  https://doi.org/10.1016/j.exppara.2012.02.008 CrossRefPubMedGoogle Scholar
  34. Kearns RA, Gesler WM (1998) Putting health into place: landscape, identity, and well-being. Syracuse University Press, New YorkGoogle Scholar
  35. Kroll RG (1990) Alkalophiles. In: Edwards C (ed) Microbiology of extreme environments. McGraw-Hill, New York, pp 55–92Google Scholar
  36. LaPaglia C, Hartzell PL (1997) Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 63:3158–3163PubMedPubMedCentralGoogle Scholar
  37. López-Rodas V, Marvá F, Rouco M et al (2008) Adaptation of the chlorophycean Dictyosphaerium chlorelloides to stressful acidic, mine metal-rich waters as result of pre-selective mutations. Chemosphere 72:703–707.  https://doi.org/10.1016/j.chemosphere.2008.04.009 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lowell RP (1991) Continental systems and submarine hydrothermal. Geophysics 29:457–476CrossRefGoogle Scholar
  39. Lynn R, Brock TD (1969) Notes on the ecology of a species of Zygogonium (Kütz.) in Yellowstone National Park. J Phycol 5:181–185PubMedCrossRefPubMedCentralGoogle Scholar
  40. MacElroy RD (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75CrossRefGoogle Scholar
  41. Meadow JF, Zabinski CA (2012) Spatial heterogeneity of eukaryotic microbial communities in an unstudied geothermal diatomaceous biological soil crust: yellowstone National Park, WY, USA. Fed Eur Microbiol Soc Microb Ecol 82:182–191.  https://doi.org/10.1111/j.1574-6941.2012.01416.x CrossRefGoogle Scholar
  42. Mpawenayo B, Mathooko JM (2004) Diatom assemblages in the hotsprings associated with Lakes Elmenteita and Baringo in Kenya. Afr J Ecol 42:363–367.  https://doi.org/10.1111/j.1365-2028.1997.100-89100.x CrossRefGoogle Scholar
  43. Niyyati M, Latifi A (2017) Free living Amoeba belonging to Vannella spp. isolated from a hotspring in Amol City, Northern Iran. Novelty in Biomedicine 2:85–88Google Scholar
  44. Nozaki H, Takano H, Misumi O et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5:28.  https://doi.org/10.1186/1741-7007-5-28 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Owen RB, Renaut RW, Jones B (2008) Geothermal diatoms: a comparative study of floras in hot spring systems of Iceland, New Zealand, and Kenya. Hydrobiologia 610:175–192.  https://doi.org/10.1007/s10750-008-9432-y CrossRefGoogle Scholar
  46. Pan WZ, Huang XW, Wei KB et al (2010) Diversity of thermophilic fungi in Tengchong Rehai national park revealed by ITS nucleotide sequence analyses. J Microbiol 48:146–152.  https://doi.org/10.1007/s12275-010-9157-2 CrossRefPubMedGoogle Scholar
  47. Prieto-Barajas CM, Valencia-Cantero E, Santoyo G (2017) Microbial mat ecosystems: structure types, functional diversity, and biotechnological application. Electron J Biotechnol 31:48–56.  https://doi.org/10.1016/j.ejbt.2017.11.001 CrossRefGoogle Scholar
  48. Pumas C, Pruetiworanan S, Peerapornpisal Y (2018) Diatom diversity in some hot springs of northern Thailand. Botanica 24:69–86.  https://doi.org/10.2478/botlit-2018-0007 CrossRefGoogle Scholar
  49. Qin J, Lehr CR, Yuan C et al (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci 106:5213–5217PubMedCrossRefGoogle Scholar
  50. Rampelotto PH (2013) Extremophiles and extreme environments. Life 3:482–485.  https://doi.org/10.3390/life3030482 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Redman RS, Litvintseva A, Sheehan KB et al (1999) Fungi from geothermal soils in Yellowstone National Park. Appl Environ Microbiol 65:5193–5197PubMedPubMedCentralGoogle Scholar
  52. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179–214.  https://doi.org/10.1046/j.1365-3091.2000.00003.x CrossRefGoogle Scholar
  53. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101.  https://doi.org/10.1038/35059215 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schleper C, Puehler G, Holz I et al (1995) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059PubMedPubMedCentralCrossRefGoogle Scholar
  55. Schonknecht G, Chen W-H, Ternes CM et al (2013) Gene transfer from Bacteria and Archaea facilitated evolution of an extremophilic eukaryote. Science (80-) 339:1207–1210.  https://doi.org/10.1126/science.1231707 CrossRefGoogle Scholar
  56. Seckbach J (ed) (1994) Evolutionary pathways and enigmatic algae: Cyanidium caldarium (Rhodophyta) and related cells. Springer Science, DordrechtGoogle Scholar
  57. Seckbach J (ed) (2007) Algae and cyanobacteria in extreme environments. Springer, DordrechtGoogle Scholar
  58. Seilacher A (1999) Biomat-related life styles in the Precambrian. Palaios 14:86–93CrossRefGoogle Scholar
  59. Selvarajan R, Sibanda T, Tekere M (2018) Thermophilic bacterial communities inhabiting the microbial mats of “indifferent” and chalybeate (iron-rich) thermal springs: diversity and biotechnological analysis. Microbiologyopen 7:1–12.  https://doi.org/10.1002/mbo3.560 CrossRefGoogle Scholar
  60. Shanks WC, Alt JC, Morgan LA (2007) Geochemistry of sublacustrine hydrothermal deposits in Yellowstone Lake-hydrothermal reactions, stable-isotope systematics, sinter deposition, and spire formation. US Geol Surv Prof Pap 1717:205–234Google Scholar
  61. Sheehan KB, Fagg JA, Ferris MJ, Henson JM (2003) Thermophilic Amoebae and legionella in hot springs in Yellowstone and Grand Teton National Parks. In: Geotherm Biololgy and Geochemistry in Yellowstone National Park. Montana State University Publications, Boseman, pp 317–324Google Scholar
  62. Simpson AGB, Slamovits CH, Archibald JM (2017) Protist diversity and eukaryote phylogeny. In: Archibald JM, Simpson AGB, Slamovits CH (eds) Handbook of the protists. Springer, Heidelberg, pp 1–21Google Scholar
  63. Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16.  https://doi.org/10.1016/S0168-6445(03)00018-4 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sittenfeld A, Mora M, Ortega JM et al (2002) Characterization of a photosynthetic Euglena strain isolated from an acidic hot mud pool of a volcanic area of Costa Rica. FEMS Microbiol Ecol 42:151–161.  https://doi.org/10.1016/S0168-6496(02)00327-6 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sittenfeld A, Vargas M, Sánchez E et al (2004) Una nueva especie de Euglena (Euglenozoa: euglenales) aislada de ambientes extremófilos en las Pailas de Barro del Volcán Rincón de la Vieja, Costa Rica. Rev Biol Trop 52:27–30PubMedCrossRefPubMedCentralGoogle Scholar
  66. Smol JP, Battarbee RW, Davis RB, Merilainen J (eds) (1986) Diatoms and lake acidity. Springer, Netherlands, DordrechtGoogle Scholar
  67. Stetter KO (1999) Extremophiles and their adaptation to hot environments. FEBS Lett 452:22–25.  https://doi.org/10.1016/S0014-5793(99)00663-8 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Stockner JG (1967) Observations of thermophilic algal communities in Mount Rainier and Yellowstone National Parks. Limnol Oceanogr 12:13–17CrossRefGoogle Scholar
  69. Tansey MR, Brock TD (1972) The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci USA 69:2426–2428PubMedCrossRefPubMedCentralGoogle Scholar
  70. Tansey MR, Brock TD (1978) Microbial life at high temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 159–216Google Scholar
  71. Tekere M, Lötter A, Olivier J, Venter S (2015) Bacterial diversity in some South African thermal springs: a metagenomic analysis. In: Proceedings World Geothermal Congress. Melbourne, Australia, pp 19–25Google Scholar
  72. Teske A (2007) Enigmatic archaeal and eukaryotic life at hydrothermal vents and in marine subsurface sediments. In: Seckback J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 519–533CrossRefGoogle Scholar
  73. Van de Vijver B, Cocquyt C (2009) Four new diatom species from La Calera hot spring in the Peruvian Andes (Colca Canyon). Diatom Res 24:209–223.  https://doi.org/10.1080/0269249X.2009.9705792 CrossRefGoogle Scholar
  74. Weber APM, Horst RJ, Barbier GG, Oesterhelt C (2007) Metabolism and metabolomics of eukaryotes living under extreme conditions. Int Rev Cytol 256:1–34.  https://doi.org/10.1016/S0074-7696(07)56001-8 CrossRefPubMedGoogle Scholar
  75. Wehr JD, Sheath RG (2003) Freshwater algae of North America. Academic, AmsterdamGoogle Scholar
  76. Wiegel J, Adams MWW (eds) (1998) Thermophiles: the keys to the molecular evolution and the origin of life?. Taylor and Francis, LondonGoogle Scholar
  77. Wilson M, Siering P, White C et al (2008) Novel archaea and bacteria dominate stable microbial communities in North America’s largest hot spring. Microb Ecol 56:292–305PubMedCrossRefGoogle Scholar
  78. Winsborough BM, Golubic S (1987) The role of diatoms in stromatolite growth: two examples from modern freshwater settings. J Phycol 23:195–201CrossRefGoogle Scholar
  79. Yamazaki A, Toyama K, Nakagiri A (2010) A new acidophilic fungus Teratosphaeria acidotherma (Capnodiales, Ascomycota) from a hot spring. Mycoscience 51:443–455.  https://doi.org/10.1007/S10267-010-0059-2 CrossRefGoogle Scholar
  80. Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology : a review. Front Bioeng Biotechnol.  https://doi.org/10.3389/fbioe.2016.00004 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zirnstein I, Arnold T, Krawczyk-Bärsch E et al (2012) Eukaryotic life in biofilms formed in a uranium mine. Microbiologyopen 1:83–94.  https://doi.org/10.1002/mbo3.17 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth and Atmospheric SciencesUniversity of Nebraska-LincolnLincolnUSA
  2. 2.School of Biological SciencesUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations