Advertisement

Extremophiles

, Volume 23, Issue 3, pp 267–275 | Cite as

Fungi, a neglected component of acidophilic biofilms: do they have a potential for biotechnology?

  • Martina HujslováEmail author
  • Lukáš Bystrianský
  • Oldřich Benada
  • Milan Gryndler
Review

Abstract

Fungi from extreme environments, including acidophilic ones, belong to biotechnologically most attractive organisms. They can serve as a source of enzymes and metabolites with potentially uncommon properties and may actively participate within bioremediation processes. In respect of their biotechnological potential, extremophilic fungi are mostly studied as individual species. Nevertheless, microorganisms rarely live separately and they form biofilms instead. Living in biofilms is the most successful life strategy on the Earth and the biofilm is the most abundant form of life in extreme environments including highly acidic ones. Compared to bacterial fraction, fungal part of acidophilic biofilms represents a largely unexplored source of organisms with possible use in biotechnology and especially data on biofilms of highly acidic soils are missing. The functioning of the biofilm results from interactions between organisms whose metabolic capabilities are efficiently combined. When we look on acidophilic fungi and their biotechnological potential we should take this fact into account as well. The practical problem to be resolved in connection with extensive studies of exploitable properties and abilities of acidophilic fungi is the methodology of isolation of strains from the nature. In this respect, novel isolation techniques should be developed.

Keywords

Acidophiles Bioprospecting Acidothrix acidophila Biofilm 

Notes

Acknowledgements

This text has been created within the frame of the project 17-09946S supported by the Czech Science Foundation. Lukáš Bystrianský was further supported by the student project of Internal grant agency SGS UJEP “Modification of polymer nanofiber textile” (J. E. Purkyně University in Ústí nad Labem). We thank Dr. Kofroňová (Institute of Microbiology ASCR, Czech Republic) for assistance with scanning electron microscopy.

References

  1. Aguilera A, Olsson S, Puerte-Sánchez F (2016) Physiological and phylogenetic diversity of acidophilic eukaryotes. In: Quatrini R, Johnson DB (eds) Acidophiles: life in extremely acidic environment. Caister Academic Press, Norfolk, pp 107–118Google Scholar
  2. Amaral-Zettler LA, Messerli MA, Laatsch AD, Smith PJS, Sorgin ML (2003) From genes to genomes: beyond biodiversity in Spain’s Rio Tinto. Biol Bull 204:205–209Google Scholar
  3. Amezcua-Allieri M, Sánchez-Durán T, Aburto J (2017) Study of chemical and enzymatic hydrolysis of cellulosic material to obtain fermentable sugars. J Chem 2017:5680105Google Scholar
  4. Armstrong RN (1999) Kinetic and chemical mechanism of epoxide hydrolase. Drug Metab Rev 31:71–86Google Scholar
  5. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152Google Scholar
  6. Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70(10):6264–6271Google Scholar
  7. Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75(7):2192–2199Google Scholar
  8. Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15(4):165–171Google Scholar
  9. Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63(7):2495–2501Google Scholar
  10. Boonen F, Vandamme A, Etoundi E, Pigneur L, Housen I (2014) Identification and charaterization of a novel multicopper oxidase from Acidomyces acidophilus with ferroxidase activity. Biochimie 102:37–46Google Scholar
  11. Cánovas D, Durán C, Rodríguez N, Amils R, de Lorenzo V (2003) Testing the limits of biological tolerance to arsenic in a fungus isolated from the River Tinto. Environ Microbiol 5(2):133–138Google Scholar
  12. Charoenpanich J (2013) Removal of acrylamide by microorganisms. In: Patil YB, Rao P (eds) Applied bioremediation—active and passive approaches. InTech, London, pp 101–121Google Scholar
  13. Chávez R, Fierro F, García-Rico RO, Vaca I (2015) Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front Microbiol 6:903.  https://doi.org/10.3389/fmicb.2015.00903 Google Scholar
  14. Črešnar B, Petrič Š (2011) Cytochrome P450 enzymes in the fungal kingdom. Biochim Biophys Acta 1814:29–35Google Scholar
  15. Das BK, Roy A, Koschorreck M, Mandal SM, Wendt-Potthoff K, Bhattacharya J (2009) Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res 43:883–894Google Scholar
  16. Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867Google Scholar
  17. de Goes KCGP, da Silva JJ, Lovato GM, Iamanaka BT, Massi FP, Andrade DS (2017) Talaromyces sayulitensis, Acidiella bohemica and Penicillium citrinum in Brazilian oil shale by-products. Anton Leeuw Int J G 110(12):1637–1646Google Scholar
  18. Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 1:1.  https://doi.org/10.1007/s12088-016-0584-6 Google Scholar
  19. Durairaj P, Hur JS, Yun H (2016) Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb Cell Fact 15:125.  https://doi.org/10.1186/s12934-016-0523-6 Google Scholar
  20. Durán C, Marín I, Amils R (1999) Specific metal sequestering acidophilic fungi. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century, vol B. Elsevier, Amsterdam, pp 521–530Google Scholar
  21. Elias S, Banin E (2012) Multi-species biofilms: living with friendly neighbours. FEMS Microbiol Rev 36:990–1004Google Scholar
  22. Ellouze M, Sayadi S (2016) White-rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation. In: Saleh HEDM, Rahman ROA (eds) Management of hazardous wastes. InTech, London, pp 103–120Google Scholar
  23. Emmerton KS, Callaghan TV, Jones HE, Leake JR, Michelsen A, Read DJ (2001) Assimilation and isotopic fractionation of nitrogen by mycorrhizal fungi. New Phytol 151:503–511Google Scholar
  24. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575Google Scholar
  25. Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369.  https://doi.org/10.3389/fmicb.2016.01369 Google Scholar
  26. Gostinčar C, Turk M (2012) Extremotolerant fungi as genetic resources for biotechnology. Bioengineered 3(5):293–297Google Scholar
  27. Gostinčar C, Gunde-Cimerman N, Turk M (2012) Genetic resources of extremotolerant fungi: a method for identification of genes conferring stress tolerance. Biores Technol 111:360–367Google Scholar
  28. Gryndler M, Hršelová H, Klír J, Kubát J, Votruba J (2003) Long-term fertilization affects the abundance of saprotrophic microfungi degrading resistant forms of soil organic matter. Folia Microbiol 48:76–82Google Scholar
  29. Hölker U, Bend J, Pracht R, Tetsch L, Müller T, Höfer M, de Hoog GS (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Anton Leeuw Int J G 86:287–294Google Scholar
  30. Horiike T, Yamashita M (2015) A new fungal isolate, Penidiella sp strain T9, accumulates the rare Earth element Dysprosium. Appl Env Microbiol 81(9):3062–3068Google Scholar
  31. Hršelová H, Hujslová M, Gryndler M (2015) Genetic transformation of extremophilic fungi Acidea extrema and Acidothrix acidophila. Folia Microbiol 60(4):365–371Google Scholar
  32. Hua H, Luo H, Bai Y, Wang K, Niu C, Huang H, Shi P, Wang C, Yang P, Yao B (2014) A thermostable glucoamylase from Bispora sp MEY-1 with stability over a broad pH range and significant starch hydrolysis capacity. PLoS One 9(11):e113581 10.1371/journal.pone.0113581 Google Scholar
  33. Hujslová M, Kubátová A, Kostovčík M, Kolařík M (2013) Acidiella bohemica gen. et sp. nov. and Acidomyces spp. (Teratosphaeriaceae), the indigenous inhabitants of extremely acidic soils in Europe. Fungal Divers 58:33–45Google Scholar
  34. Hujslová M, Kubátová A, Kostovčík M, Blanchette RA, de Beer ZW, Chudíčková M, Kolařík M (2014) Three new genera of fungi from extremely acidic soils. Mycol Prog 13:819–831Google Scholar
  35. Hujslová M, Kubátová A, Bukovská P, Chudíčková M, Kolařík M (2017) Extremely acidic soils are dominated by species-poor and highly specific fungal communities. Microb Ecol 73:321–337Google Scholar
  36. Ivarson KC, Morita H (1982) Single-cell protein production by the acidtolerant fungus Scytalidium acidophilum from acid hydrolysates of waste paper. Appl Env Microbiol 43(3):643–647Google Scholar
  37. Johnson BD (1998) MiniReview. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317Google Scholar
  38. Johnson DB (2014) Recent developments in microbiological approaches for securing mine wastes and for recovering metals from mine waters. Minerals 4:279–292Google Scholar
  39. Joshi MH, Balamurugan P, Venugopalan VP, Rao TS (2011) Dense fouling in acid transfer pipelines by an acidophilic rubber degrading fungus. Biofouling 27(6):621–629Google Scholar
  40. Kolařík M, Hujslová M, Vazquéz-Campos X (2015) Acidotolerant genus Fodinomyces (Ascomycota: Capnodiales) is a synonym of Acidiella. Czech Mycol 67:37–38Google Scholar
  41. Krause S, Bremges A, Münch PC, McHardy AC, Gescher J (2017) Characterisation of a stable laboratory co-culture of acidophilic nanoorganisms. Sci Rep 7:3289.  https://doi.org/10.1038/s41598-017-03315-6 Google Scholar
  42. Kusnin N, Syed MA, Ahmad SA (2015) Toxicity, pollution and biodegradation of acrylamide—a mini review. JOBIMB 3(2):6–12Google Scholar
  43. Lennon JT, Lehmkuhl BK (2016) A trait-based approach to bacterial biofilms in soil. Environ Microbiol 18(8):2732–2742Google Scholar
  44. Luo H, Li J, Yang J, Wang H, Yang Y, Huang H, Shi P, Yuan T, Fan Y, Yao B (2009a) A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles 13:849–857Google Scholar
  45. Luo H, Wang Y, Wang H, Yang J, Yang Y, Huang H, Yang P, Bai Y, Shi P, Fan Y, Yao B (2009b) A novel highly acidic β-mannanase from acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl Microbiol Biotechnol 82:453–461Google Scholar
  46. Luo H, Wang Y, Li J, Wang H, Yang J et al (2009c) Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme Microb Tech 45:126–133Google Scholar
  47. Luo H, Yang J, Yang P, Li J, Huang H et al (2010a) Gene cloning and expression of a new acidic family 7 endo-b-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1. Appl Microbiol Biotechnol 85:1015–1023Google Scholar
  48. Luo H, Yang J, Li J, Shi P, Huang H, Bai Y, Fan Y, Yao B (2010b) Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY-1 that is homologous to family 30 glycosyl hydrolases. Appl Microbiol Biotechnol 86(6):1829–1839Google Scholar
  49. Manson MM (1980) Epoxides—is there a human health problem? Br J Ind Med 37:317–336Google Scholar
  50. Martínez P, Parada P (2016) Metabolomic approaches to the study of acidophiles. In: Quatrini R, Johnson DB (eds) Acidophiles: life in extremely acidic environments. Caister Academic Press, Norfolk, pp 249–262Google Scholar
  51. Mathieu Y, Prosper P, Favier F, Harvengt L, Didierjean C, Jacquot J-P, Morel-Rouhier M, Gelhaye E (2013) Diversification of fungal specific class a glutathione transferases in saprotrophic fungi. PLoS One 8(11):e80298.  https://doi.org/10.1371/journal.pone.0080298 Google Scholar
  52. Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 6:475.  https://doi.org/10.3389/fmicb.2015.00475 Google Scholar
  53. Mirete S, Morgante V, Gonzáles-Pastor JE (2017) Acidophiles: diversity and mechanisms of adaptation to acidic environments. In: Stan-Lotter H, Fendrihan S (eds) Adaption to microbial life to environmental extremes. Springer, Vienna, pp 227–251Google Scholar
  54. Mosier AC, Justice NB, Bowen BP, Baran R, Thomas BC, Northen TR, Banfield JF (2013) Metabolites associated with adaptation of microorganisms to an acidophilic, metal-rich environment identified by stable-isotope-enabled metabolomics. MBIO 4(2):00484-12.  https://doi.org/10.1128/mbio.00484-12 Google Scholar
  55. Mosier AC, Miller CS, Frischkorn KR, Ohm RA, Li Z, LaButti K, Lapidus A, Lipzen A, Chen C, Johnson J, Lindquist EA, Pan C, Hettich RL, Grigoriev IV, Singer SW, Banfield JF (2016) Fungi contribute critical but spatially varying roles in nitrogen and carbon cycling in acid mine drainage. Front Microbiol 7:238.  https://doi.org/10.3389/fmicb.2016.00238 Google Scholar
  56. Neifar M, Maktouf S, Ghorbel RE, Jaouani A, Cherif A (2015) Extremophiles as source of novel bioactive compounds with industrial potential. In: Gupta VK, Tuohy MG, O᾽Donovan A, Lohani M (eds) Biotechnology of bioactive compounds: sources and applications. Wiley, Hoboken, pp 245–268Google Scholar
  57. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3:597–611Google Scholar
  58. Oggerin M, Tornos F, Rodriguez N, Pascual L, Amils R (2016) Fungal iron biomineralization in Rio Tinto. Minerals 6(2):37.  https://doi.org/10.3390/min6020037 Google Scholar
  59. Purchase D (ed) (2016) Fungal applications in sustainable environmental biotechnology. Springer, BerlinGoogle Scholar
  60. Quatrini R, Johnson DB (2018) Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr Opin Microbiol 43:139–147Google Scholar
  61. Řezáčová V, Baldrian P, Hršelová H, Larsen J, Gryndler M (2007) Influence of mineral and organic fertilization on soil fungi, enzyme activities and humic substances in a long-term field experiment. Folia Microbiol 52:415–421Google Scholar
  62. Salinas AE, Wong MG (1999) Glutathione S-transferases—a review. Curr Med Chem 6:279–309Google Scholar
  63. Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, Gerrits van den Ende AHG, Ruibal C, De Leo F, Urzì C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20Google Scholar
  64. Selbmann L, Egidi E, Isola D, Onofri S, Zucconi L, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese GC (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Bios 147(1):237–246Google Scholar
  65. Sharma A, Kawarabayasi Y, Satyanarayana T (2012) Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16:1–19Google Scholar
  66. Smit MS (2004) Fungal epoxide hydrolases: new landmarks in sequence-activity space. Trends Biotechnol 22(3):123–129Google Scholar
  67. Stierle AA, Stierle DB (2017) Secondary metabolites of mine waste acidophilic fungi. In: Paterson R, Lima N (eds) Bioprospecting, topics in biodiversity and conservation. Springe, Berlin, pp 213–243Google Scholar
  68. Tetsch L, Bend J, Janßen M, Hölker U (2005) Evidence for functional laccases in the acidophilic ascomycete Hortaea acidophila and isolation of laccase-specific gene fragments. FEMS Microbiol Lett 245:161–168Google Scholar
  69. Vazquéz-Campos X, Kinsela AS, Waite TD, Collins RN, Neilan BA (2014) Fodinomyces uranophilus gen. nov. sp. nov. and Coniochaeta fodinicola sp. nov., two uranium mine-inhabiting Ascomycota fungi from northern Australia. Mycologia 106(6):1073–1089Google Scholar
  70. Wang H, Luo H, Bai Y, Wang Y, Yang P, Shi P, Zhang W, Fan Y, Yao B (2009) An acidophilic beta-galactosidase from Bispora sp. MEY-1 with high lactose hydrolytic activity under simulated gastric conditions. J Agric Food Chem 57(12):5535–5541Google Scholar
  71. Wang H, Luo H, Li J, Bai Y, Huang H, Shi P, Fan Y, Yao B (2010) An alpha-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with beta mannanase. Bioresour Technol 101(21):8376–8382Google Scholar
  72. Wu GX, Sorensen KB, Rodgers M, Zhan XM (2009) Microbial community associated with glucose-induced enhanced biological phosphorus removal. Water Sci Technol 60:2105–2113Google Scholar
  73. Xu X, Zhang Y, Meng Q, Meng K, Zhang W, Zhou X, Luo H, Chen R, Yang P, Yao B (2013) Overexpression of a fungal β-mannanase from Bispora sp. MEY-1 in maize seeds and enzyme characterization. PLoS One 8(2):e56146.  https://doi.org/10.1371/journal.pone.0056146 Google Scholar
  74. Yamazaki A, Toyama K, Nakagiri A (2010) A new acidophilic fungus Teratosphaeria acidotherma (Capnodiales, Ascomycota) from a hot spring. Mycoscience 51:443–455Google Scholar
  75. Yang J, Luo H, Li J, Wang K, Cheng H, Bai Y, Yuan T, Fan Y, Yao B (2011) Cloning, expression and characterization of an acidic endo-polygalacturonase from Bispora sp. MEY-1 and its potential application in juice clarification. Process Biochem 46(1):272–277Google Scholar
  76. Zhang R, Bellenberg S, Neu TR, Sand W, Vera M (2016) The biofilm lifestyle of acidophilic metal/sulfur-oxidizing microorganisms. In: Rampelotto PH (ed) Biotechnology of extremophiles. Springer, Berlin, pp 177–213Google Scholar
  77. Zhao J, Shi P, Luo H, Yang P, Zhao H, Bai Y, Huang H, Wang H, Yao B (2010) An acidophilic and acid-stable β-mannanase from Phialophora sp. P13 with high mannan hydrolysis activity under simulated gastric conditions. J Agric Food Chem 58:3184–3190Google Scholar
  78. Zou J, Hallberg BM, Bergfors T, Oesch F, Arand M, Mowbray SL, Jones TA (2000) Structure of Aspergillus niger epoxide hydrolase at 1.8 Å resolution: implications for the structure and function of the mammalian microsomal class of epoxide hydrolases. Structure 8:111–122Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Martina Hujslová
    • 1
    Email author
  • Lukáš Bystrianský
    • 2
  • Oldřich Benada
    • 2
    • 3
  • Milan Gryndler
    • 2
  1. 1.Laboratory of Fungal biologyInstitute of Microbiology ASCRPragueCzech Republic
  2. 2.Department of Biology, Faculty of ScienceJan Evangelista Purkyně University in Ústí nad LabemÚstí nad LabemCzech Republic
  3. 3.Laboratory of Molecular Structure CharacterizationInstitute of Microbiology ASCRPragueCzech Republic

Personalised recommendations