Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Temperature adaptation of DNA ligases from psychrophilic organisms


DNA ligases operating at low temperatures have potential advantages for use in biotechnological applications. For this reason, we have characterized the temperature optima and thermal stabilities of three minimal Lig E-type ATP-dependent DNA ligase originating from Gram-negative obligate psychrophilic bacteria. The three ligases, denoted Vib-Lig, Psy-Lig, and Par-Lig, show a remarkable range of thermal stabilities and optima, with the first bearing all the hallmarks of a genuinely cold-adapted enzyme, while the latter two have activity and stability profiles more typical of mesophilic proteins. A comparative approach based on sequence comparison and homology modeling indicates that the cold-adapted features of Vib-Lig may be ascribed to differences in surface charge rather than increased local or global flexibility which is consistent with the contemporary emerging paradigm of the physical basis of cold adaptation of enzymes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Aghajari N, Feller G, Gerday C, Haser R (1998) Structures of the psychrophilic Alteromonas haloplanctis alpha-amylase give insights into cold adaptation at a molecular level. Structure 6:1503–1516

  2. Aittaleb M, Hubner R, Lamotte-Brasseur J, Gerday C (1997) Cold adaptation parameters derived from cDNA sequencing and molecular modelling of elastase from Antarctic fish Notothenia neglecta. Protein Eng 10:475–477

  3. Akey D, Martins A, Aniukwu J, Glickman MS, Shuman S, Berger JM (2006) Crystal structure and nonhomologous end-joining function of the ligase component of Mycobacterium DNA ligase D. J Biol Chem 281:13412–13423.

  4. Al Khudary R, Stosser NI, Qoura F, Antranikian G (2008) Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 58:2018–2024.

  5. Åqvist J, Isaksen GV, Brandsdal BO (2017) Computation of enzyme cold adaptation. Nat Rev Chem 1:0051.

  6. Arcus VL et al (2016) On the temperature dependence of enzyme-catalyzed rates. Biochemistry 55:1681–1688.

  7. Bauer RJ, Jurkiw TJ, Evans TC Jr, Lohman GJ (2017) Rapid time scale analysis of T4 DNA ligase-DNA binding. Biochemistry 56:1117–1129.

  8. Biasini M et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258.

  9. Chambers CR, Patrick WM (2015) Archaeal nucleic acid ligases and their potential in biotechnology. Archaea (Vancouver, BC) 2015:170571.

  10. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23.

  11. D’Amico S et al (2002) Molecular basis of cold adaptation. Philos T Roy Soc B 357:917–924.

  12. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389.

  13. Daniel RM, Danson MJ (2013) Temperature and the catalytic activity of enzymes: a fresh understanding. FEBS Lett 587:2738–2743.

  14. Davail S, Feller G, Narinx E, Gerday C (1994) Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus. TA41 J Biol Chem 269:17448–17453

  15. Doherty AJ, Suh SW (2000) Structural and mechanistic conservation in DNA ligases. Nucleic Acids Res 28:4051–4058.

  16. Doherty AJ, Wigley DB (1999) Functional domains of an ATP-dependent DNA ligase. J Mol Biol 285:63–71.

  17. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35:W522–W525.

  18. Duplantis BN, Bosio CM, Nano FE (2011) Temperature-sensitive bacterial pathogens generated by the substitution of essential genes from cold-loving bacteria: potential use as live vaccines. J Mol Med JMM 89:437–444.

  19. Dwivedi N, Dube D, Pandey J, Singh B, Kukshal V, Ramachandran R, Tripathi RP (2008) NAD(+)-dependent DNA ligase: a novel target waiting for the right inhibitor. Med Res Rev 28:545–568.

  20. Egidius E, Wiik R, Andersen K, Hoff KA, Hjeltnes B (1986) Vibrio salmonicida sp. nov., a new fish pathogen. Int J Syst Evol Microbiol 36:518–520.

  21. Ellenberger T, Tomkinson AE (2008) Eukaryotic DNA ligases: structural and functional insights. Annu Rev Biochem 77:313–338.

  22. Ericsson UB, Hallberg BM, DeTitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357:289–298.

  23. Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60:648–662.

  24. Fraternali F, Cavallo L (2002) Parameter optimized surfaces (POPS): analysis of key interactions and conformational changes in the ribosome. Nucleic Acids Res 30:2950–2960

  25. Georlette D, Jonsson ZO, Van Petegem F, Chessa J, Van Beeumen J, Hubscher U, Gerday C (2000) A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures. Eur J Biochem 267:3502–3512

  26. Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278:37015–37023.

  27. Groudieva T, Grote R, Antranikian G (2003) Psychromonas arctica sp. nov., a novel psychrotolerant, biofilm-forming bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 53:539–545.

  28. Huston AL, Methe B, Deming JW (2004) Purification, characterization, and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl Environ Microbiol 70:3321–3328.

  29. Isaksen GV, Åqvist J, Brandsdal BO (2016) Enzyme surface rigidity tunes the temperature dependence of catalytic rates. Proc Natl Acad Sci 113:7822–7827.

  30. Kaminski AM et al (2018) Structures of DNA-bound human ligase IV catalytic core reveal insights into substrate binding and catalysis. Nat Commun 9:2642.

  31. Kazuoka T, Oikawa T, Muraoka I, Si Kuroda, Soda K (2007) A cold-active and thermostable alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1. Extremophiles 11:257–267.

  32. Kim DJ, Kim O, Kim HW, Kim HS, Lee SJ, Suh SW (2009) ATP-dependent DNA ligase from Archaeoglobus fulgidus displays a tightly closed conformation. Acta Crystallogr Sect F-Struct Biol Cryst Commun 65:544–550.

  33. Leiros HK, Willassen NP, Smalas AO (1999) Residue determinants and sequence analysis of cold-adapted trypsins. Extremophiles 3:205–219

  34. Leiros I, Moe E, Lanes O, Smalas AO, Willassen NP (2003) The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features. Acta Crystallogr D Biol Crystallogr 59:1357–1365

  35. Lohman GJS, Chen LX, Evans TC (2011) Kinetic characterization of single strand break ligation in duplex DNA by T4 DNA ligase. J Biol Chem 286:44187–44196.

  36. Magnet S, Blanchard JS (2004) Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis. Biochemistry 43:710–717.

  37. Martinez RM, Megli CJ, Taylor RK (2010) Growth and laboratory maintenance of Vibrio cholerae. Curr Protoc Microbiol 6:1.

  38. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793.

  39. Metpally RP, Reddy BV (2009) Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genom 10:11.

  40. Nair PA, Nandakumar J, Smith P, Odell M, Lima CD, Shuman S (2007) Structural basis for nick recognition by a minimal pluripotent DNA ligase. Nat Struct Mol Biol 14:770–778

  41. Nishida H, Kiyonari S, Ishino Y, Morikawa K (2006) The closed structure of an archaeal DNA ligase from Pyrococcus furiosus. J Mol Biol 360:956–967.

  42. Novak HR, Sayer C, Panning J, Littlechild JA (2013) Characterisation of an L-haloacid dehalogenase from the marine psychrophile Psychromonas ingrahamii with potential industrial application. Mar Biotechnol (New York, NY) 15:695–705.

  43. Pascal JM, O’Brien PJ, Tomkinson AE, Ellenberger T (2004) Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432:473–478.

  44. Pascal JM et al (2006) A flexible interface between DNA ligase and PCNA supports conformational switching and efficient ligation of DNA. Mol Cell 24:279–291.

  45. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8:785–786

  46. Petrova T et al (2012) ATP-dependent DNA ligase from Thermococcus sp. 1519 displays a new arrangement of the OB-fold domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:1440–1447.

  47. Pitcher RS, Brissett NC, Doherty AJ (2007a) Nonhomologous end-joining in bacteria: a microbial perspective. Annu Rev Microbiol 61:259–282.

  48. Pitcher RS, Green AJ, Brzostek A, Korycka-Machala M, Dziadek J, Doherty AJ (2007b) NHEJ protects mycobacteria in stationary phase against the harmful effects of desiccation. DNA Repair. 6:1271–1276.

  49. Płociński P et al (2017) DNA Ligase C and Prim-PolC participate in base excision repair in mycobacteria. Nat Commun 8:1251.

  50. Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90.

  51. Russell RJ, Gerike U, Danson MJ, Hough DW, Taylor GL (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6:351–361

  52. Saavedra HG, Wrabl JO, Anderson JA, Li J, Hilser VJ (2018) Dynamic allostery can drive cold adaptation in enzymes. Nature 558:324–328.

  53. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9:671–675

  54. Shi K et al (2018) T4 DNA ligase structure reveals a prototypical ATP-dependent ligase with a unique mode of sliding clamp interaction. Nucleic Acids Res.

  55. Shuman S (2009) DNA Ligases: progress and prospects. J Biol Chem 284:17365–17369.

  56. Shuman S, Glickman MS (2007) Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol 5:852–861.

  57. Siddiqui KS et al (2006) Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteramonas haloplanktis. Proteins 64:486–501

  58. Smalas AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57

  59. Struvay C, Feller G (2012) Optimization to low temperature activity in psychrophilic enzymes. Int J Mol Sci 13:11643–11665.

  60. Subramanya HS, Doherty AJ, Ashford SR, Wigley DB (1996) Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell 85:607–615

  61. Tanabe M, Ishino Y, Nishida H (2015) From structure–function analyses to protein engineering for practical applications of DNA ligase. Archaea (Vancouver, BC) 2015:267570.

  62. van der Kamp MW, Prentice EJ, Kraakman KL, Connolly M, Mulholland AJ, Arcus VL (2018) Dynamical origins of heat capacity changes in enzyme-catalysed reactions. Nat Commun 9:1177.

  63. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8(52–56):29

  64. Wallon G et al (1997) Sequence and homology model of 3-isopropylmalate dehydrogenase from the psychrotrophic bacterium Vibrio sp. I5 suggest reasons for thermal instability. Protein Eng 10:665–672

  65. Wei J, Timler JG, Knutson CM, Barney BM (2013) Branched-chain 2-keto acid decarboxylases derived from Psychrobacter. Fems Microbiol Lett 346:105–112.

  66. Wilkinson A, Day J, Bowater R (2001) Bacterial DNA ligases. Mol Microbiol 40:1241–1248

  67. Williamson A, Pedersen H (2014) Recombinant expression and purification of an ATP-dependent DNA ligase from Aliivibrio salmonicida. Protein Expres Purif 97:29–36.

  68. Williamson A, Rothweiler U, Schroder Leiros H-K (2014) Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface. Acta Crystallogr Sect D 70:3043–3056.

  69. Williamson A, Hjerde E, Kahlke T (2016) Analysis of the distribution and evolution of the ATP-dependent DNA ligases of bacteria delineates a distinct phylogenetic group ‘Lig E’. Mol Microbiol 99:274–290.

  70. Williamson A, Grgic M, Leiros HS (2018) DNA binding with a minimal scaffold: structure–function analysis of Lig E DNA ligases. Nucleic Acids Res 46:8616–8629.

  71. Zhao JS, Deng Y, Manno D, Hawari J (2010) Shewanella spp. genomic evolution for a cold marine lifestyle and in situ explosive biodegradation. PLoS One 5:9109.

Download references


This research was supported by Research Council Norway [244247, 2015]; Funding for open access charge was granted by the publication fund at the University of Tromsø.

Author information

Correspondence to Adele Williamson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 772 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berg, K., Leiros, I. & Williamson, A. Temperature adaptation of DNA ligases from psychrophilic organisms. Extremophiles 23, 305–317 (2019).

Download citation


  • ATP-dependent DNA ligase
  • Psychrophile
  • Enzyme activity
  • Temperature optima