, Volume 23, Issue 1, pp 69–77 | Cite as

Extremely stable indole-3-glycerol-phosphate synthase from hyperthermophilic archaeon Pyrococcus furiosus

  • Muhammad Arif
  • Naeem RashidEmail author
  • Sumera Perveen
  • Qamar Bashir
  • Muhammad Akhtar
Original Paper


The gene-encoding Indole-3-glycerol phosphate synthase, a key enzyme involved in the cyclization of 1-(o-carboxyphenylamino)-1-deoxyribulose 5-phosphate, from Pyrococcus furiosus was cloned and expressed in Escherichia coli. The gene product was produced in the soluble and active form. The recombinant protein, purified to apparent homogeneity, displayed highest activity at 100 °C and pH of 5.5. The recombinant enzyme followed Michaelis–Menten kinetics exhibiting apparent Vmax and Km values of 20 ± 0.5 μmol min−1 mg−1 and 140 ± 10 µM, respectively. The activation energy, determined from the linear Arrhenius plot, was 17 ± 0.5 kJ mol−1. A unique property of PfInGPS is its stability against denaturants and temperature. There was no significant change in activity even in the presence of 8 M urea or 5 M guanidine hydrochloride. Furthermore, recombinant PfInGPS was highly thermostable with a half-life of 200 min at 100 °C. To the best of our knowledge, this is the most stable indole-3-glycerol phosphate synthase characterized to date.


Pyrococcus furiosus Indole-3-glycerol phosphate synthase TrpC Gene expression Thermostability 


  1. Bagautdinov B, Yutani K (2011) Structure of indole-3-glycerol phosphate synthase from Thermus thermophilus HB8: implications for thermal stability. Acta Crystallogr Sect D D67:1054–1064. CrossRefGoogle Scholar
  2. Baldwin RL (2007) Energetics of protein folding. J Mol Biol 371:283–301. CrossRefGoogle Scholar
  3. Bisswanger H, Kirschner K, Cohn W, Hager V, Hansson E (1979) N-(5-Phosphoribosyl)anthranilate isomerase-indoleglycerol-phosphate synthase. 1. A substrate analog binds to two different binding sites on the bifunctional enzyme from Escherichia coli. Biochemistry 18:5946–5953. CrossRefGoogle Scholar
  4. Chohan SM, Rashid N (2013) TK1656, a thermostable l-asparaginase from Thermococcus kodakaraensis, exhibiting highest ever reported enzyme activity. J Biosci Bioeng 116:438–443. CrossRefGoogle Scholar
  5. Cohn W, Kirschner K, Paul C (1979) N-(5-Phosphoribosyl)anthranilate isomerase-indoleglycerol-phosphate synthase. 2. Fast-reaction studies show that a fluorescent substrate analog binds independently to two different sites. Biochemistry 18:5953–5959. CrossRefGoogle Scholar
  6. Crawford IP (1987) Synthesis of tryptophan from chorismate: comparative aspects. Methods Enzymol 142:293–300CrossRefGoogle Scholar
  7. Czekster CM, Neto BA, Lapis AA, Dupont J, Santos DS, Basso LA (2009) Steady-state kinetics of indole-3-glycerol phosphate synthase from Mycobacterium tuberculosis. Arch Biochem Biophys 486:19–26. CrossRefGoogle Scholar
  8. Farias ST, Bonato MC (2003) Preferred amino acids and thermostability. Genet Mol Res 2:383–393Google Scholar
  9. Gerth ML, Nigon LV, Patrick WM (2012) Characterization of the indole-3-glycerol phosphate synthase from Pseudomonas aeruginosa PAO1. Protein J 31:359–365. CrossRefGoogle Scholar
  10. Gharib G, Rashid N, Bashir Q, Gardner QA, Muhammad Akhtar M, Imanaka T (2016) Pcal_1699, an extremely thermostable malate dehydrogenase from hyperthermophilic archaeon Pyrobaculum calidifontis. Extremophiles 20:57–67. CrossRefGoogle Scholar
  11. Hennig M, Darimont B, Kirschner K, Jansonius JN (1995) 2.0 Å structure of indols-3-glycerol phosphate synthase from the hyperthermophile Sulfolobus solfataricus: possible determinants of protein stability. Structure 3:1295–1306CrossRefGoogle Scholar
  12. Hennig M, Darimont BD, Jansonius JN, Kirschner K (2002) The catalytic mechanism of indole-3-glycerol phosphate synthase: crystal structures of complexes of the enzyme from Sulfolobus solfataricus with substrate analogue, substrate, and product. J Mol Biol 319:757–766. CrossRefGoogle Scholar
  13. Hensel R (1993) Proteins of extreme thermophiles. In: Kates M, Kushner DJ, Matheson AT (eds) The biochemistry of the Archaea. Elsevier, Amsterdam, pp 209–221Google Scholar
  14. Hoch SO (1979) Isolation and characterization of two tryptophan biosynthetic enzymes, indoleglycerol phosphate synthase and phosphoribosyl anthranilate isomerase, from Bacillus subtilis. J Bacteriol 139:362–368Google Scholar
  15. Horng JS, Linz JE, Pestka JJ (1989) Cloning and characterization of the trpC gene from an aflatoxigenic strain of Aspergillus parasiticust. Appl Environ Microbiol 55:2561–2568Google Scholar
  16. Imanaka T, Lee S, Takagi M, Fujiwara S (1995) Aspartyl-tRNA synthetase of the hyperthermophilic archaeon Pyrococcus sp. KOD 1 has a chimerical structure of eukaryotic and bacterial enzymes. Gene 164:153–156CrossRefGoogle Scholar
  17. Jin Z, Kim J-H, Park SU, Kim SU (2016) Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase a-subunit (TSA) genes from Polygonum tinctorium. Plant Cell Rep 35:2449–2459. CrossRefGoogle Scholar
  18. Knöchel TR, Hennig M, Merz A, Darimont B, Kirschner K, Jansonius JN (1996) The crystal structure of indole-3-glycerol phosphate synthase from the hyperthermophilic archaeon Sulfolobus solfataricus in three different crystal forms: effects of ionic strength. J Mol Biol 262:502–515. CrossRefGoogle Scholar
  19. Knöchel T, Pappenberger A, Jansonius JN, Kirschner K (2002) The crystal structure of indoleglycerol-phosphate synthase from Thermotoga maritima. Kinetic stabilization by salt bridges. J Biol Chem 277:8626–8634. CrossRefGoogle Scholar
  20. Maeder DL, Weiss RB, Dunn DM, Cherry JL, González JM, DiRuggiero J, Robb FT (1999) Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics 152:1299–1305Google Scholar
  21. Merz A, Knöchel T, Jansonius JN, Kirschner K (1999) The hyperthermostable indoleglycerol phosphate synthase from Thermotoga maritima is destabilized by mutational disruption of two solvent-exposed salt bridges. J Mol Biol 288:753–763. CrossRefGoogle Scholar
  22. Pace CN (2009) Energetics of protein hydrogen bonds. Nat Struct Mol Biol 16:681–682. CrossRefGoogle Scholar
  23. Prantl F, Strasser A, Aebi M, Furter R, Niederberger P, Kirschner K, Huetter R (1985) Purification and characterization of the indole-3-glycerolphosphate synthase/anthranilate synthase complex of Saccharomyces cerevisiae. Eur J Biochem 146:95–100CrossRefGoogle Scholar
  24. Priestle JP, Grutter MG, White JL, Vincent MG, Kania M, Wilson E, Jardetzky TS, Kirschner K, Jansonius JN (1987) Three-dimensional structure of the bifunctional enzyme N-(5′-phosphoribosyl)anthranilate isomerase-indole-3-glycerol-phosphate synthase from Escherichia coli. Proc Natl Acad Sci USA 84:5690–5694CrossRefGoogle Scholar
  25. Rashid N, Morikawa M, Imanaka T (1995) An abnormally acidic TATA-binding protein from a hyperthermophilic archaeon. Gene 166:139–143CrossRefGoogle Scholar
  26. Rasool N, Rashid N, Iftikhar S, Akhtar M (2010) N-terminal deletion of Tk1689, a subtilisin-like serine protease from Thermococcus kodakaraensis, copes with its cytotoxicity in Escherichia coli. J Biosci Bioeng 110:381–385. CrossRefGoogle Scholar
  27. Russell RJM, Taylor GL (1995) Engineering thermostability: lessons from thermophilic proteins. Curr Opin Biotechnol 6:370–374CrossRefGoogle Scholar
  28. Schlee S, Dietrich S, Kurcon T, Delaney P, Goodey NM, Sterner R (2013) Kinetic mechanism of indole-3-glycerol phosphate synthase. Biochemistry 52:132–142. CrossRefGoogle Scholar
  29. Schlee S, Klein T, Schumacher M, Nazet J, Merkl R, Steinhoff H-J, Sterner R (2018) Relationship of catalysis and active site loop dynamics in the (βα)8-barrel enzyme indole-3-glycerol phosphate synthase. Biochemistry 57:3265–3277. CrossRefGoogle Scholar
  30. Sterner R, Kleemann GR, Szadkowski H, Lustig A, Hennig M, Kirschner K (1996) Phosphoribosyl anthranilate isomerase from Thermutuga maritima is an extremely stable and active homodimer. Protein Sci 5:2000–2008. CrossRefGoogle Scholar
  31. Tang X, Ezaki S, Fujiwara S, Takagi M, Atomi H, Imanaka T (1999) The tryptophan biosynthesis gene cluster trpCDEGFBA from Pyrococcus kodakaraensis KOD1 is regulated at the transcriptional level and expressed as a single mRNA. Mol Gen Genet 262:815–821CrossRefGoogle Scholar
  32. Wilmanns M, Schlagenhauf E, Fol B, Jansonius JN (1990) Crystallization and structure solution at 4 A resolution of the recombinant synthase domain of N-(5′-phosphoribosyl)anthranilate isomerase:indole-3-glycerol-phosphate synthase from Escherichia coli complexed to a substrate analogue. Protein Eng 3:173–180CrossRefGoogle Scholar
  33. Yang Y, Zhang M, Zhang H, Lei J, Jin R, Xu S, Bao J, Zhang L, Wang H (2006) Purification and characterization of Mycobacterium tuberculosis indole-3-glycerol phosphate synthase. Biochemistry (Moscow) 71:S38–S43CrossRefGoogle Scholar
  34. Zaccardi MJ, Mannweiler O, Boehr DD (2012) Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures. Biochem Biophys Res Commun 418:324–329. CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Arif
    • 1
  • Naeem Rashid
    • 1
    Email author
  • Sumera Perveen
    • 1
  • Qamar Bashir
    • 1
  • Muhammad Akhtar
    • 2
  1. 1.School of Biological SciencesUniversity of the PunjabLahorePakistan
  2. 2.School of Biological SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations