Advertisement

Extremophiles

, Volume 23, Issue 1, pp 19–33 | Cite as

CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes

  • Sonali Majumdar
  • Michael P. TernsEmail author
Original Paper

Abstract

Diverse CRISPR-Cas immune systems protect archaea and bacteria from viruses and other mobile genetic elements. All CRISPR-Cas systems ultimately function by sequence-specific destruction of invading complementary nucleic acids. However, each CRISPR system uses compositionally distinct crRNP [CRISPR (cr) RNA/Cas protein] immune effector complexes to recognize and destroy invasive nucleic acids by unique molecular mechanisms. Previously, we found that Type I-A (Csa) effector crRNPs from Pyrococcus furiosus function in vivo to eliminate invader DNA. Here, we reconstituted functional Type I-A effector crRNPs in vitro with recombinant Csa proteins and synthetic crRNA and characterized properties of crRNP assembly, target DNA recognition and cleavage. Six proteins (Csa 4-1, Cas3″, Cas3′, Cas5a, Csa2, Csa5) are essential for selective target DNA binding and cleavage. Native gel shift analysis and UV-induced RNA–protein crosslinking demonstrate that Cas5a and Csa2 directly interact with crRNA 5′ tag and guide sequences, respectively. Mutational analysis revealed that Cas3″ is the effector nuclease of the complex. Together, our results indicate that DNA cleavage by Type I-A crRNPs requires crRNA-guided and protospacer adjacent motif-dependent target DNA binding to unwind double-stranded DNA and expose single strands for progressive ATP-dependent 3′–5′ cleavage catalyzed by integral Cas3′ helicase and Cas3″ nuclease crRNP components.

Keywords

CRISPR Cas Csa Cas3 Type I-A Pyrococcus furiosus 

Notes

Acknowledgements

We thank Rebecca Terns for valuable mentorship, discussions and early contributions to the writing of this manuscript. We are also grateful to members of Terns’ lab for their technical input, Claiborne V. C. Glover III for critical reading of the manuscript, and Dr. Hong Li (Florida State University) for contributing purified Cas3″ and Cas3′ proteins shown in Fig. S5b. This work was supported by National Institutes of Health grant R35GM118160 to M.P.T.

Supplementary material

792_2018_1057_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)
792_2018_1057_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 13 kb)

References

  1. Barrangou R et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712.  https://doi.org/10.1126/science.1138140 CrossRefGoogle Scholar
  2. Beloglazova N, Petit P, Flick R, Brown G, Savchenko A, Yakunin AF (2011) Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J 30:4616–4627.  https://doi.org/10.1038/emboj.2011.377 CrossRefGoogle Scholar
  3. Brendel J et al (2014) A complex of Cas proteins 5, 6, and 7 is required for the biogenesis and stability of clustered regularly interspaced short palindromic repeats (crispr)-derived rnas (crrnas) in Haloferax volcanii. J Biol Chem 289:7164–7177.  https://doi.org/10.1074/jbc.M113.508184 CrossRefGoogle Scholar
  4. Brouns SJ et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964.  https://doi.org/10.1126/science.1159689 CrossRefGoogle Scholar
  5. Cady KC, O’Toole GA (2011) Non-identity-mediated CRISPR-bacteriophage interaction mediated via the Csy and Cas3 proteins. J Bacteriol 193:3433–3445.  https://doi.org/10.1128/JB.01411-10 CrossRefGoogle Scholar
  6. Carte J, Wang R, Li H, Terns RM, Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22:3489–3496.  https://doi.org/10.1101/gad.1742908 CrossRefGoogle Scholar
  7. Carte J, Pfister NT, Compton MM, Terns RM, Terns MP (2010) Binding and cleavage of CRISPR RNA by Cas6. RNA 16:2181–2188.  https://doi.org/10.1261/rna.2230110 CrossRefGoogle Scholar
  8. Deveau H et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bact 190:1390–1400.  https://doi.org/10.1128/JB.01412-07 CrossRefGoogle Scholar
  9. Elmore J, Deighan T, Westpheling J, Terns RM, Terns MP (2015) DNA targeting by the type I-G and type I-A CRISPR-Cas systems of Pyrococcus furiosus. Nucleic Acids Res 43:10353–10363.  https://doi.org/10.1093/nar/gkv1140 Google Scholar
  10. Elmore JR, Sheppard NF, Ramia N, Deighan T, Li H, Terns RM, Terns MP (2016) Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system. Genes Dev 30:447–459.  https://doi.org/10.1101/gad.272153.115 CrossRefGoogle Scholar
  11. Estrella MA, Kuo FT, Bailey S (2016) RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex. Genes Dev 30:460–470.  https://doi.org/10.1101/gad.273722.115 CrossRefGoogle Scholar
  12. Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:e60.  https://doi.org/10.1371/journal.pcbi.0010060 CrossRefGoogle Scholar
  13. Hale CR et al (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956.  https://doi.org/10.1016/j.cell.2009.07.040 CrossRefGoogle Scholar
  14. Hale CR et al (2012) Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 45:292–302.  https://doi.org/10.1016/j.molcel.2011.10.023 CrossRefGoogle Scholar
  15. Hale CR, Cocozaki A, Li H, Terns RM, Terns MP (2014) Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex. Genes Dev 28:2432–2443.  https://doi.org/10.1101/gad.250712.114 CrossRefGoogle Scholar
  16. Hayes RP et al (2016) Structural basis for promiscuous PAM recognition in type I-E cascade from E. Coli. Nature 530(7591):499–503.  https://doi.org/10.1038/nature16995 CrossRefGoogle Scholar
  17. He F, Vestergaard G, Peng W, She Q, Peng X (2016) CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b. Nucleic Acids Res 45(4):1902–1913.  https://doi.org/10.1093/nar/gkw1265 Google Scholar
  18. Hille F, Richter H, Wong SP, Bratovic M, Ressel S, Charpentier E (2018) The biology of CRISPR-Cas: backward and forward. Cell 172:1239–1259.  https://doi.org/10.1016/j.cell.2017.11.032 CrossRefGoogle Scholar
  19. Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH, Nogales E, Doudna JA (2014) CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Proc Natl Acad Sci USA 111:6618–6623.  https://doi.org/10.1073/pnas.1405079111 CrossRefGoogle Scholar
  20. Hochstrasser ML, Taylor DW, Kornfeld JE, Nogales E, Doudna JA (2016) DNA targeting by a minimal CRISPR RNA-guided cascade. Mol Cell 63:840–851.  https://doi.org/10.1016/j.molcel.2016.07.027 CrossRefGoogle Scholar
  21. Huo Y et al (2014) Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat Struct Mol Biol 21(9):771.  https://doi.org/10.1038/nsmb.2875 CrossRefGoogle Scholar
  22. Jackson RN, Wiedenheft B (2015) A conserved structural chassis for mounting versatile CRISPR RNA-guided immune responses. Mol Cell 58:722–728.  https://doi.org/10.1016/j.molcel.2015.05.023 CrossRefGoogle Scholar
  23. Jackson RN et al (2014) Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia Coli. Science.  https://doi.org/10.1126/science.1256328 Google Scholar
  24. Jiang F, Doudna JA (2015) The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 30:100–111.  https://doi.org/10.1016/j.sbi.2015.02.002 CrossRefGoogle Scholar
  25. Jiang F et al (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351(6275):867–871.  https://doi.org/10.1126/science.aad8282 CrossRefGoogle Scholar
  26. Kazlauskiene M, Tamulaitis G, Kostiuk G, Venclovas C, Siksnys V (2016) Spatiotemporal control of Type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition. Mol Cell 62:295–306.  https://doi.org/10.1016/j.molcel.2016.03.024 CrossRefGoogle Scholar
  27. Lintner NG et al (2011a) The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system. J Mol Biol 405:939–955.  https://doi.org/10.1016/j.jmb.2010.11.019 CrossRefGoogle Scholar
  28. Lintner NG et al (2011b) Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J Biol Chem 286:21643–21656.  https://doi.org/10.1074/jbc.M111.238485 CrossRefGoogle Scholar
  29. Majumdar S et al (2015) Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus. RNA 21:1147–1158.  https://doi.org/10.1261/rna.049130.114 CrossRefGoogle Scholar
  30. Majumdar S, Ligon M, Skinner WC, Terns RM, Terns MP (2016) Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex. Extremophiles: Life Under Extreme Cond.  https://doi.org/10.1007/s00792-016-0871-5 Google Scholar
  31. Makarova KS et al (2011) Evolution and classification of the CRISPR-Cas systems nature reviews. Microbiology 9:467–477.  https://doi.org/10.1038/nrmicro2577 Google Scholar
  32. Makarova KS, Anantharaman V, Grishin NV, Koonin EV, Aravind L (2014) CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Front Genet 5:102.  https://doi.org/10.3389/fgene.2014.00102 CrossRefGoogle Scholar
  33. Makarova KS et al (2015) An updated evolutionary classification of CRISPR-Cas systems nature reviews. Microbiology 13:722–736.  https://doi.org/10.1038/nrmicro3569 Google Scholar
  34. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740.  https://doi.org/10.1099/mic.0.023960-0 CrossRefGoogle Scholar
  35. Mulepati S, Bailey S (2013) In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional ATP-dependent degradation of DNA target. J Biol Chem 288:22184–22192.  https://doi.org/10.1074/jbc.M113.472233 CrossRefGoogle Scholar
  36. Mulepati S, Heroux A, Bailey S (2014) Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science.  https://doi.org/10.1126/science.1256996 Google Scholar
  37. Nam KH, Haitjema C, Liu X, Ding F, Wang H, DeLisa MP, Ke A (2012) Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 20:1574–1584.  https://doi.org/10.1016/j.str.2012.06.016 CrossRefGoogle Scholar
  38. O’Connell M (2018) Molecular Mechanisms of RNA-Targeting by Cas13-containing Type VI CRISPR-Cas Systems. J Mol Biol.  https://doi.org/10.1016/j.jmb.2018.06.029 Google Scholar
  39. Pausch P, Muller-Esparza H, Gleditzsch D, Altegoer F, Randau L, Bange G (2017) Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance. Mol Cell.  https://doi.org/10.1016/j.molcel.2017.06.036 Google Scholar
  40. Peng W, Li H, Hallstrom S, Peng N, Liang YX, She Q (2013) Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus. RNA Biol 10:738–748.  https://doi.org/10.4161/rna.23798 CrossRefGoogle Scholar
  41. Plagens A, Tjaden B, Hagemann A, Randau L, Hensel R (2012) Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax. J Bacteriol 194:2491–2500.  https://doi.org/10.1128/JB.00206-12 CrossRefGoogle Scholar
  42. Plagens A et al (2014) In vitro assembly and activity of an archaeal CRISPR-Cas type I-A cascade interference complex. Nucleic Acids Res.  https://doi.org/10.1093/nar/gku120 Google Scholar
  43. Reeks J, Graham S, Anderson L, Liu H, White MF, Naismith JH (2013) Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector complexes. RNA Biol 10:762–769.  https://doi.org/10.4161/rna.23854 CrossRefGoogle Scholar
  44. Rollins MF, Schuman JT, Paulus K, Bukhari HS, Wiedenheft B (2015) Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa. Nucleic Acids Res 43:2216–2222.  https://doi.org/10.1093/nar/gkv094 CrossRefGoogle Scholar
  45. Rouillon C et al (2013) Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol Cell 52:124–134.  https://doi.org/10.1016/j.molcel.2013.08.020 CrossRefGoogle Scholar
  46. Sashital DG, Wiedenheft B, Doudna JA (2012) Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell 46:606–615.  https://doi.org/10.1016/j.molcel.2012.03.020 CrossRefGoogle Scholar
  47. Shah SA, Erdmann S, Mojica FJ, Garrett RA (2013) Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 10:891–899.  https://doi.org/10.4161/rna.23764 CrossRefGoogle Scholar
  48. Shiimori M, Garrett SC, Chambers DP, Glover CVC 3rd, Graveley BR, Terns MP (2017) Role of free DNA ends and protospacer adjacent motifs for CRISPR DNA uptake in Pyrococcus furiosus. Nucleic Acids Res 45:11281–11294.  https://doi.org/10.1093/nar/gkx839 CrossRefGoogle Scholar
  49. Shiimori M, Garrett SC, Graveley BR, Terns MP (2018) Cas4 nucleases define the PAM length, and orientation of dna fragments integrated at CRISPR loci. Mol cell 70(814–824):e816.  https://doi.org/10.1016/j.molcel.2018.05.002 Google Scholar
  50. Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30:1335–1342.  https://doi.org/10.1038/emboj.2011.41 CrossRefGoogle Scholar
  51. Sinkunas T, Gasiunas G, Waghmare SP, Dickman MJ, Barrangou R, Horvath P, Siksnys V (2013) In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J 32:385–394.  https://doi.org/10.1038/emboj.2012.352 CrossRefGoogle Scholar
  52. Spilman M et al (2013) Structure of an RNA silencing complex of the CRISPR-Cas immune system. Mol Cell 52:146–152.  https://doi.org/10.1016/j.molcel.2013.09.008 CrossRefGoogle Scholar
  53. Staals RH et al (2013) Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. Mol Cell 52:135–145.  https://doi.org/10.1016/j.molcel.2013.09.013 CrossRefGoogle Scholar
  54. Staals RH et al (2014) RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell 56:518–530.  https://doi.org/10.1016/j.molcel.2014.10.005 CrossRefGoogle Scholar
  55. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67.  https://doi.org/10.1038/nature13011 CrossRefGoogle Scholar
  56. Szczelkun MD et al (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci USA 111(27):9798–9803.  https://doi.org/10.1073/pnas.1402597111 CrossRefGoogle Scholar
  57. Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14:321–327.  https://doi.org/10.1016/j.mib.2011.03.005 CrossRefGoogle Scholar
  58. Terns RM, Terns MP (2013) The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus. Biochem Soc Trans 41:1416–1421.  https://doi.org/10.1042/BST20130056 CrossRefGoogle Scholar
  59. van Duijn E et al (2012) Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in clustered-regularly-interspaced shot-palindromic-repeats (CRISPR)-associated protein complexes from Escherichia coli and Pseudomonas aeruginosa. Mol Cell proteom MCP 112:1430–1441.  https://doi.org/10.1074/mcp.M112.020263 CrossRefGoogle Scholar
  60. van Erp PB, Jackson RN, Carter J, Golden SM, Bailey S, Wiedenheft B (2015) Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli. Nucleic Acids Res 43:8381–8391.  https://doi.org/10.1093/nar/gkv793 CrossRefGoogle Scholar
  61. van Erp PBG et al (2018) Conformational Dynamics of DNA binding and Cas3 recruitment by the CRISPR RNA-guided cascade complex. ACS Chem Biol 13:481–490.  https://doi.org/10.1021/acschembio.7b00649 CrossRefGoogle Scholar
  62. Vestergaard G, Garrett RA, Shah SA (2014) CRISPR adaptive immune systems of archaea. RNA Biol 11:156–167.  https://doi.org/10.4161/rna.27990 CrossRefGoogle Scholar
  63. Wang J, Li J, Zhao H, Sheng G, Wang M, Yin M, Wang Y (2015) Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell 163:840–853.  https://doi.org/10.1016/j.cell.2015.10.008 CrossRefGoogle Scholar
  64. Wang X et al (2016) Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3. Nat Struct Mol Biol 23:868–870.  https://doi.org/10.1038/nsmb.3269 CrossRefGoogle Scholar
  65. Westra ER et al (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46:595–605.  https://doi.org/10.1016/j.molcel.2012.03.018 CrossRefGoogle Scholar
  66. Wiedenheft B et al (2011) Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477:486–489.  https://doi.org/10.1038/nature10402 CrossRefGoogle Scholar
  67. Xiao Y et al (2017) Structure basis for directional r-loop formation and substrate handover mechanisms in Type I CRISPR-Cas system. Cell 170(48–60):e11.  https://doi.org/10.1016/j.cell.2017.06.012 Google Scholar
  68. Xiao Y, Luo M, Dolan AE, Liao M, Ke A (2018) Structure basis for RNA-guided DNA degradation by Cascade and Cas3. Science.  https://doi.org/10.1126/science.aat0839 Google Scholar
  69. Zhao H et al (2014) Crystal structure of the RNA-guided immune surveillance cascade complex in Escherichia coli. Nature.  https://doi.org/10.1038/nature13733 Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensUSA
  2. 2.Department of GeneticsUniversity of GeorgiaAthensUSA
  3. 3.Department of MicrobiologyUniversity of GeorgiaAthensUSA

Personalised recommendations