Advertisement

Extremophiles

, Volume 22, Issue 6, pp 827–837 | Cite as

Biogeography and taxonomic overview of terrestrial hot spring thermophilic phages

  • Olivier Zablocki
  • Leonardo van Zyl
  • Marla Trindade
Review

Abstract

Bacterial viruses (“phages”) play important roles in the regulation and evolution of microbial communities in most ecosystems. Terrestrial hot springs typically contain thermophilic bacterial communities, but the diversity and impacts of its associated viruses (“thermophilic phages”) are largely unexplored. Here, we provide a taxonomic overview of phages that have been isolated strictly from terrestrial hot springs around the world. In addition, we placed 17 thermophilic phage genomes in a global phylogenomic context to detect evolutionary patterns. Thermophilic phages have diverse morphologies (e.g., tailed, filamentous), unique virion structures (e.g., extremely long tailed siphoviruses), and span five taxonomic families encompassing strictly thermophilic phage genera. Within the phage proteomic tree, six thermophilic phage-related clades were identified, with evident genomic relatedness between thermophilic phages and archaeal viruses. Moreover, whole proteome analyses showed clustering between phages that infect distinct host phyla, such as Firmicutes and DeinococcusThermus. The potential for discovery of novel phage-host systems in terrestrial hot springs remain mostly untapped, thus additional emphasis on thermophilic phages in ecological prospecting is encouraged to gain insights into the microbial population dynamics of these environments.

Keywords

Thermophilic phage Hot spring Viral metagenomics Thermus Gammasphaerolipovirus 

Notes

Acknowledgements

This work was supported by the DST/NRF SARChI programme (UID87326) and the Claude Leon Foundation.

References

  1. Adriaenssens EM, Edwards R, Nash JHE et al (2015) Integration of genomic and proteomic analyses in the classification of the Siphoviridae family. Virology 477:144–154CrossRefPubMedGoogle Scholar
  2. Averhoff B (2009) Shuffling genes around in hot environments: the unique DNA transporter of Thermus thermophilus. FEMS Microbiol Rev 33:611–626CrossRefPubMedGoogle Scholar
  3. Bell E (2012) Life at extremes: environments, organisms, and strategies for survival. CABI, WallingfordCrossRefGoogle Scholar
  4. Berdygulova Z, Westblade LF, Florens L et al (2011) Temporal regulation of gene expression of the Thermus thermophilus bacteriophage P23-45. J Mol Biol 405:125–142.  https://doi.org/10.1016/j.jmb.2010.10.049 CrossRefPubMedGoogle Scholar
  5. Bolduc B, Wirth JF, Mazurie A, Young MJ (2015) Viral assemblage composition in Yellowstone acidic hot springs assessed by network analysis. ISME J 9:2162–2177.  https://doi.org/10.1038/ismej.2015.28 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bolduc B, Bin Jang H, Doulcier G et al (2017) vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 5:e3243.  https://doi.org/10.7717/peerj.3243 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Borriss M, Helmke E, Hanschke R, Schweder T (2003) Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice. Extremophiles 7:377–384.  https://doi.org/10.1007/s00792-003-0334-7 CrossRefPubMedGoogle Scholar
  8. Breitbart M, Wegley L, Leeds S et al (2004) Phage community dynamics in hot springs. Appl Environ Microbiol 70:1633–1640.  https://doi.org/10.1128/aem.70.3.1633-1640.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cava F, Hidalgo A, Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13:213–231CrossRefPubMedGoogle Scholar
  10. Currie DH, Guss AM, Herring CD et al (2014) Profile of secreted hydrolases, associated proteins, and SlpA in Thermoanaerobacterium saccharolyticum during the degradation of hemicellulose. Appl Environ Microbiol 80:5001–5011.  https://doi.org/10.1128/aem.00998-14 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dellas N, Snyder JC, Bolduc B, Young MJ (2014) Archaeal viruses: diversity, replication, and structure. Annu Rev Virol 1:399–426.  https://doi.org/10.1146/annurev-virology-031413-085357 CrossRefPubMedGoogle Scholar
  12. Doi K, Mori K, Martono H et al (2013) Draft genome sequence of geobacillus kaustophilus GBlys, a lysogenic strain with bacteriophage phiOH2. GenomeA 1:4–5.  https://doi.org/10.1128/genomea.00634-13.copyright CrossRefGoogle Scholar
  13. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548.  https://doi.org/10.1038/21119 CrossRefPubMedGoogle Scholar
  14. Gudbergsdóttir SR, Menzel P, Krogh A, Young M, Peng X (2016) Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs. Environ Microbiol 18:863–874.  https://doi.org/10.1111/1462-2920.13079 CrossRefPubMedGoogle Scholar
  15. Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol 8:444–450.  https://doi.org/10.1016/j.mib.2005.06.005 CrossRefPubMedGoogle Scholar
  16. Hjorleifsdottir S, Aevarsson A, Hreggvidsson GO, Fridjonsson OH, Kristjansson JK (2014) Isolation, growth and genome of the Rhodothermus RM378 thermophilic bacteriophage. Extremophiles 18:261–270.  https://doi.org/10.1007/s00792-013-0613-x CrossRefPubMedGoogle Scholar
  17. Hong W, Han J, Dai X et al (2010) Isolation and characterization of a thermus bacteriophage lytic from Tengchong Rehai hot spring lytic. Wei Sheng Wu Xue Bao 50:322–327PubMedGoogle Scholar
  18. Hurwitz BL, Sullivan MB (2013) The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One 8:e57355CrossRefPubMedPubMedCentralGoogle Scholar
  19. Iranzo J, Koonin EV, Prangishvili D, Krupovic M (2016) Bipartite Network Analysis of the archaeal virosphere: evolutionary connections between viruses and capsidless mobile elements. J Virol 90:11043–11055.  https://doi.org/10.1128/jvi.01622-16 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jaatinen ST, Happonen LJ, Laurinmäki P et al (2008) Biochemical and structural characterisation of membrane-containing icosahedral dsDNA bacteriophages infecting thermophilic Thermus thermophilus. Virology 379:10–19.  https://doi.org/10.1016/j.virol.2008.06.023 CrossRefPubMedGoogle Scholar
  21. Jalasvuori M, Jaatinen ST, Laurinavicius S et al (2009) The closest relatives of icosahedral viruses of thermophilic bacteria are among viruses and plasmids of the Halophilic Archaea. J Virol 83:9388–9397.  https://doi.org/10.1128/jvi.00869-09 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jalasvuori M, Pawlowski A, Bamford JKH (2010) A unique group of virus-related, genome-integrating elements found solely in the bacterial family Thermaceae and the archaeal family Halobacteriaceae. J Bacteriol 192:3231–3234.  https://doi.org/10.1128/jb.00124-10 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Katsura I, Hendrix RW (1984) Length determination in bacteriophage lambda tails. Cell 39:691–698.  https://doi.org/10.1016/0092-8674(84)90476-8 CrossRefPubMedGoogle Scholar
  24. Kauffman KM, Hussain FA, Yang J et al (2018) A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554:118CrossRefPubMedGoogle Scholar
  25. Kimura M, Jia ZJ, Nakayama N, Asakawa S (2008) Ecology of viruses in soils: past, present and future perspectives. Soil Sci Plant Nutr 54:1–32.  https://doi.org/10.1111/j.1747-0765.2007.00197.x CrossRefGoogle Scholar
  26. Kreil DP (2001) Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res 29:1608–1615.  https://doi.org/10.1093/nar/29.7.1608 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lin L, Hong W, Ji X et al (2010) Isolation and characterization of an extremely long tail Thermus bacteriophage from Tengchong hot springs in China. J Basic Microbiol 50:452–456.  https://doi.org/10.1002/jobm.201000116 CrossRefPubMedGoogle Scholar
  28. Lin L, Han J, Ji X et al (2011) Isolation and characterization of a new bacteriophage MMP17 from Meiothermus. Extremophiles 15:253–258.  https://doi.org/10.1007/s00792-010-0354-z CrossRefPubMedGoogle Scholar
  29. Liu B, Zhou F, Wu S et al (2009) Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1. Res Microbiol 160:166–171.  https://doi.org/10.1016/j.resmic.2008.12.005 CrossRefPubMedGoogle Scholar
  30. Liu B, Wu S, Xie L (2010) Complete genome sequence and proteomic analysis of a thermophilic bacteriophage BV1. Acta Oceanol Sin 29:84–89.  https://doi.org/10.1007/s13131-010-0039-6 CrossRefGoogle Scholar
  31. Ma Y, Allen LZ, Palenik B (2014) Diversity and genome dynamics of marine cyanophages using metagenomic analyses. Environ Microbiol Rep 6:583–594.  https://doi.org/10.1111/1758-2229.12160 CrossRefPubMedGoogle Scholar
  32. Matsushita I, Yamashita N, Yokota A (1995) Isolation and characterization of bacteriophage induced from a new isolate of Thermus aquaticus. Microbiol Cult Collect Off Publ Japan Soc Cult Collect 11:133–138Google Scholar
  33. Mead DA, Monsma S, Mei B, Gowda K, Lodes M, Schoenfeld TW (2017) Functional metagenomics of a replicase from a novel hyperthermophilic aquificales virus. In: Charles TC, Liles MR, Sessitsch A (eds) Functional metagenomics: tools and applications. Springer, Cham, pp 217–242CrossRefGoogle Scholar
  34. Menzel P, Gudbergsdóttir SR, Rike AG et al (2015) Comparative metagenomics of eight geographically remote terrestrial hot springs. Microb Ecol 70:411–424.  https://doi.org/10.1007/s00248-015-0576-9 CrossRefPubMedGoogle Scholar
  35. Minakhin L, Goel M, Berdygulova Z et al (2008) Genome comparison and proteomic characterization of Thermus thermophilus bacteriophages P23-45 and P74-26: siphoviruses with triplex-forming sequences and the longest known tails. J Mol Biol 378:468–480.  https://doi.org/10.1016/j.jmb.2008.02.018 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nagayoshi Y, Kumagae K, Mori K et al (2016) Physiological properties and genome structure of the hyperthermophilic filamentous phage φOH3 which infects Thermus thermophilus HB8. Front Microbiol.  https://doi.org/10.3389/fmicb.2016.00050 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Naryshkina T, Liu J, Florens L et al (2006) Thermus thermophilus bacteriophage ϕYS40 genome and proteomic characterization of virions. J Mol Biol 364:667–677.  https://doi.org/10.1016/j.jmb.2006.08.087 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nishimura Y, Yoshida T, Kuronishi M et al (2017) ViPTree: the viral proteomic tree server. Bioinformatics 33:2379–2380.  https://doi.org/10.1093/bioinformatics/btx157 CrossRefPubMedGoogle Scholar
  39. Overman SA, Bondre P, Maiti NC, Thomas GJ (2005) Structural characterization of the filamentous bacteriophage PH75 from Thermus thermophilus by raman and UV-resonance raman spectroscopy. Biochemistry 44:3091–3100.  https://doi.org/10.1021/bi048163d CrossRefPubMedGoogle Scholar
  40. Patel BKC, Chalcroft JP, Morgan HW, Daniel RM (1989) In situ morphologies of some bacteria from New Zealand Hot Springs. Syst Appl Microbiol 11:187–193.  https://doi.org/10.1016/s0723-2020(89)80060-8 CrossRefGoogle Scholar
  41. Pawlowski A, Rissanen I, Bamford JKH, Krupovic M, Jalasvuori M (2014) Gammasphaerolipovirus, a newly proposed bacteriophage genus, unifies viruses of halophilic archaea and thermophilic bacteria within the novel family Sphaerolipoviridae. Arch Virol 159:1541–1554.  https://doi.org/10.1007/s00705-013-1970-6 CrossRefPubMedGoogle Scholar
  42. Pederson DM, Welsh LC, Marvin DA et al (2001) The protein capsid of filamentous bacteriophage PH75 from Thermus thermophilus. J Mol Biol 309:401–421.  https://doi.org/10.1006/jmbi.2001.4685 CrossRefPubMedGoogle Scholar
  43. Peng X, Garrett RA, She Q (2012) Archaeal viruses-novel, diverse and enigmatic. Sci China Life Sci 55:422–433CrossRefPubMedGoogle Scholar
  44. Pentecost A (1996) High temperature ecosystems and their chemical interactions with their environment. In: Ciba foundation symposium 202-evolution of hydrothermal ecosystems on earth (and mars?). Wiley, New York, pp 99–111Google Scholar
  45. Pirajno F, van Kranendonk MJ (2005) Review of hydrothermal processes and systems on Earth and implications for Martian analogues. Aust J Earth Sci 52:329–351CrossRefGoogle Scholar
  46. Prangishvili D (2013) The wonderful world of archaeal viruses. Annu Rev Microbiol 67:565–585.  https://doi.org/10.1146/annurev-micro-092412-155633 CrossRefPubMedGoogle Scholar
  47. Prangishvili D, Bamford DH, Forterre P et al (2017) The enigmatic archaeal virosphere. Nat Rev Microbiol 15:724CrossRefPubMedGoogle Scholar
  48. Rachel R, Bettstetter M, Hedlund BP et al (2002) Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments. Arch Virol 147:2419–2429.  https://doi.org/10.1007/s00705-002-0895-2 CrossRefPubMedGoogle Scholar
  49. Rice G, Stedman K, Snyder J et al (2001) Viruses from extreme thermal environments. Proc Natl Acad Sci USA 98:13341–13345.  https://doi.org/10.1073/pnas.231170198 CrossRefPubMedGoogle Scholar
  50. Rohwer F (2003) Global phage diversity. Cell 113:141CrossRefPubMedGoogle Scholar
  51. Sakaki Y, Oshima T (1975) Isolation and characterization of a bacteriophage infectious to an extreme thermophile, Thermus thermophilus HB8. J Virol 15:1449–1453PubMedPubMedCentralGoogle Scholar
  52. Sakaki Y, Oshima T (1976) A new lipid-containing phage infecting acidophilic thermophilic bacteria. Virology 75:256–259.  https://doi.org/10.1016/0042-6822(76)90024-6 CrossRefPubMedGoogle Scholar
  53. Schoenfeld T, Patterson M, Richardson PM et al (2008) Assembly of viral metagenomes from Yellowstone hot springs. Appl Environ Microbiol 74:4164–4174.  https://doi.org/10.1128/aem.02598-07 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tamakoshi M, Murakami A, Sugisawa M et al (2011) Genomic and proteomic characterization of the large Myoviridae bacteriophage ϕTMA of the extreme thermophile Thermus thermophilus. Bacteriophage 1:152–164.  https://doi.org/10.4161/bact.1.3.16712 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Thurber RV (2009) Current insights into phage biodiversity and biogeography. Curr Opin Microbiol 12:582–587.  https://doi.org/10.1016/j.mib.2009.08.008 CrossRefPubMedGoogle Scholar
  56. Tripathi C, Mishra H, Khurana H et al (2017) Complete genome analysis of Thermus parvatiensis and comparative genomics of Thermus spp. provide insights into genetic variability and evolution of natural competence as strategic survival attributes. Front Microbiol.  https://doi.org/10.3389/fmicb.2017.01410 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tsuboi M, Benevides JM, Bondre P, Thomas GJ (2005) Structural details of the thermophilic filamentous bacteriophage PH75 determined by polarized Raman microspectroscopy. Biochemistry 44:4861–4869.  https://doi.org/10.1021/bi0479306 CrossRefPubMedGoogle Scholar
  58. Uldahl K, Peng X (2013) Biology, biodiversity and application of thermophilic viruses. In: Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology. Springer, Dordrecht, pp 271–304CrossRefGoogle Scholar
  59. Veesler D, Cambillau C (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev 75:423–433.  https://doi.org/10.1128/mmbr.00014-11 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Weiss MC, Sousa FL, Mrnjavac N et al (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol.  https://doi.org/10.1038/nmicrobiol.2016.116 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol 4:201–219.  https://doi.org/10.1146/annurev-virology-101416-041639 CrossRefPubMedGoogle Scholar
  62. Willner D, Thurber RV, Rohwer F (2009) Metagenomic signatures of 86 microbial and viral metagenomes. Environ Microbiol 11:1752–1766CrossRefPubMedGoogle Scholar
  63. Xu J, Hendrix RW, Duda RL (2004) Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 16:11–21.  https://doi.org/10.1016/j.molcel.2004.09.006 CrossRefPubMedGoogle Scholar
  64. Yu MX, Slater MR, Ackermann HW (2006) Isolation and characterization of Thermus bacteriophages. Arch Virol 151:663–679.  https://doi.org/10.1007/s00705-005-0667-x CrossRefPubMedGoogle Scholar
  65. Zablocki O, van Zyl LJ, Kirby B, Trindade M (2017) Diversity of dsDNA viruses in a South African hot spring assessed by metagenomics and microscopy. Viruses 9:348.  https://doi.org/10.3390/v9110348 CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MicrobiologyThe Ohio State UniversityColumbusUSA
  2. 2.Institute for Microbial Biotechnology and Metagenomics, University of the Western CapeBellvilleSouth Africa

Personalised recommendations