Halobacterium salinarum storage and rehydration after spray drying and optimization of the processes for preservation of carotenoids
- 76 Downloads
Abstract
Spray drying is appropriate for the preservation of halophilic microorganisms due to the nature of these microorganisms, as they survive in adverse environmental conditions by being encapsulated in salt crystals. Artificial neural networks were in this study used to optimize practically significant spray-drying regimes of the C50-carotenoids producer Halobacterium salinarum. Immediately after drying, the samples contained up to 54% halobacterial biomass and less than 5% moisture, and the level of preservation of carotenoids was 95–97%. The storage of biomass at 4 °C resulted in the gradual degradation of the carotenoids, which reached 58–64% in the best samples after 1 year. A comprehensive study of changes in halobacteria biomass after spray drying and the nature of the damage provided new data on the survival and preservation of cells and biologically active substances in the various spray-drying regimes and at different storage times.
Keywords
Halobacterium salinarum Spray drying Carotenoids Halophiles, artificial neural networkAbbreviations
- DMSO
Dimethyl sulfoxide
- ANN
Artificial neural network
- CFU
Colony forming unit
Notes
Acknowledgements
The work is financially supported with the Grant of Russian Science Foundation No. 16-19-10469.
Supplementary material
References
- Akolkar AV, Durai D, Desai AJ (2009) Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation. J Appl Microbiol 109:44–53. https://doi.org/10.1111/j.1365-2672.2009.04626.x PubMedGoogle Scholar
- Ananta E, Volkert M, Knorr D (2005) Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int Dairy J 15:399–409. https://doi.org/10.1016/j.idairyj.2004.08.004 CrossRefGoogle Scholar
- Association of Official Analytical Chemists (2016) Official methods of analysis of AOAC international, 20th edn. AOAC Press, GaithersburgGoogle Scholar
- Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, Kottemann MC, Hood L, DiRuggiero J (2004) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14:1025–1035. https://doi.org/10.1101/gr.1993504 CrossRefPubMedPubMedCentralGoogle Scholar
- Behboudi-Jobbehdar S, Soukoulis C, Yonekura L, Fisk I (2013) Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. acidophilus NCIMB 701748. Dry Technol 31:1274–1283. https://doi.org/10.1080/07373937.2013.788509 CrossRefGoogle Scholar
- DasSarma S, DasSarma P (2017) Halophiles. In: eLS. Wiley, Chichester, UK, pp 1–13. https://doi.org/10.1002/9780470015902.a0000394.pub4 Google Scholar
- DasSarma P, Coker JA, Huse V, DasSarma S (2010) Halophiles, industrial applications. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation and cell technology. Wiley, Hoboken, NJ, pp 1–43Google Scholar
- Desmond C, Stanton C, Fitzgerald GF, Collins K, Ross RP (2001) Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int Dairy J 11:801–808. https://doi.org/10.1016/S0958-6946(01)00121-2 CrossRefGoogle Scholar
- Dummer AM, Bonsall JC, Cihla JB, Lawry SM, Johnson GC, Peck RF (2011) Bacterioopsin-mediated regulation of bacterioruberin biosynthesis in Halobacterium salinarum. J Bacteriol 193:5658–5667. https://doi.org/10.1128/JB.05376-11 CrossRefPubMedPubMedCentralGoogle Scholar
- El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430:37–48. https://doi.org/10.1016/j.abb.2004.03.007 CrossRefPubMedGoogle Scholar
- Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009) Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiology 9:104–112. https://doi.org/10.1089/ast.2007.0234 CrossRefPubMedPubMedCentralGoogle Scholar
- Fu W-Y, Etzel MR (1995) Spray drying of Lactococcus lactis ssp. lactis C2 and cellular injury. J Food Sci 60:195–200. https://doi.org/10.1111/j.1365-2621.1995.tb05636.x CrossRefGoogle Scholar
- Ghandi A, Powell IB, Howes T, Chen XD, Adhikari B (2012) Effect of shear rate and oxygen stresses on the survival of Lactococcus lactis during the atomization and drying stages of spray drying: a laboratory and pilot scale study. J Food Eng 113:194–200. https://doi.org/10.1016/j.jfoodeng.2012.06.005 CrossRefGoogle Scholar
- Goh F, Jeon YJ, Barrow K, Neilan BA, Burns BP (2011) Osmoadaptive strategies of the archaeon Halococcus hamelinensis isolated from a hypersaline stromatolite environment. Astrobiology 11:529–536. https://doi.org/10.1089/ast.2010.0591 CrossRefPubMedGoogle Scholar
- Golowczyc MA, Silva J, Abraham AG, De Antoni GL, Teixeira P (2010) Preservation of probiotic strains isolated from kefir by spray drying. Lett Appl Microbiol 50:7–12. https://doi.org/10.1111/j.1472-765X.2009.02759.x CrossRefPubMedGoogle Scholar
- Gong P, Zhang L, Han X, Shigwedha N, Song W, Yi H, Du M, Cao C (2014) Injury mechanisms of lactic acid bacteria starter cultures during spray drying: a review. Drying Technol 32:793–800. https://doi.org/10.1080/07373937.2013.860458 CrossRefGoogle Scholar
- Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse HJ, Stan-Lotter H (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8:431–439. https://doi.org/10.1007/s00792-004-0403-6 CrossRefPubMedGoogle Scholar
- Jaakkola ST, Zerulla K, Guo Q, Liu Y, Ma H, Yang C, Bamford DH, Chen X, Soppa J, Oksanen HM (2014) Halophilic archaea cultivated from surface sterilized middle-late Eocene rock salt are polyploid. PLoS One 9:e110533. https://doi.org/10.1371/journal.pone.0110533 CrossRefPubMedPubMedCentralGoogle Scholar
- Kalenov SV, Baurina MM, Skladnev DA, Kuznetsov AY (2016) High-effective cultivation of Halobacterium salinarum providing with bacteriorhodopsin production under controlled stress. J Biotechnol 233:211–218. https://doi.org/10.1016/j.jbiotec.2016.07.014 CrossRefPubMedGoogle Scholar
- Kochish II, Naidenskiy MS, Totoevva ME (2008) Efficacy of the immunostimulating Baxinum-vet preparation poultry (article in Russian). Poult Chick Prod 5:29–31Google Scholar
- Kosanke JW, Osburn RM, Shuppe GI, Smith RS (1992) Slow rehydration improves the recovery of dried bacterial populations. Can J Microbiol 38:520–525. https://doi.org/10.1139/m92-086 CrossRefPubMedGoogle Scholar
- Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227. https://doi.org/10.1007/s00792-005-0437-4 CrossRefPubMedGoogle Scholar
- Lavari L, Ianniello R, Páez R, Zotta T, Cuatrin A, Reinheimer J, Parente E, Vinderola G (2015) Growth of Lactobacillus rhamnosus 64 in whey permeate and study of the effect of mild stresses on survival to spray drying. LWT Food Sci Technol 63:322–330. https://doi.org/10.1016/j.lwt.2015.03.066 CrossRefGoogle Scholar
- Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a β-carotene rich powder. J Ind Microbiol Biotechnol 20:82–85. https://doi.org/10.1038/sj.jim.2900485 CrossRefGoogle Scholar
- López-Cortés A, Ochoa JL (1998) The biological significance of Halobacteria on nucleation and sodium chloride crystal growth. Stud Surf Sci Catal 120:903–923. https://doi.org/10.1016/S0167-2991(99)80384-X CrossRefGoogle Scholar
- Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83. https://doi.org/10.1007/s007920100184 CrossRefPubMedGoogle Scholar
- Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of micro-organisms by drying; a review. J Microbiol Methods 66:183–193. https://doi.org/10.1016/j.mimet.2006.02.017 CrossRefPubMedGoogle Scholar
- Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 575. https://doi.org/10.1007/0-306-48053-0 CrossRefGoogle Scholar
- Oren A (2016) Life in hypersaline environments. In: Hurst CJ (ed) Their world: a diversity of microbial environments. Springer International Publishing, Cham, pp 301–339CrossRefGoogle Scholar
- Peighambardoust SH, Golshan Tafti A, Hesari J (2011) Application of spray drying for preservation of lactic acid starter cultures: a review. Trends Food Sci Technol 22:215–224. https://doi.org/10.1016/j.tifs.2011.01.009 CrossRefGoogle Scholar
- Raposo MFJ, Morais AMMB, Morais RMSC (2012) Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass. World J Microbiol Biotechnol 28:1253–1257. https://doi.org/10.1007/s11274-011-0929-6 CrossRefPubMedGoogle Scholar
- Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedPubMedCentralGoogle Scholar
- Rodrigo-Baños M, Garbayo I, Vílchez C, Bonete MJ, Martínez-Espinosa RM (2015) Carotenoids from Haloarchaea and their potential in biotechnology. Mar Drugs 13:5508–5532. https://doi.org/10.3390/md13095508 CrossRefPubMedPubMedCentralGoogle Scholar
- Sakane T, Fukuda I, Itoh T, Yokota A (1992) Long-term preservation of halophilic archaebacteria and thermoacidophilic archaebacteria by liquid drying. J Microbiol Methods 16:281–287. https://doi.org/10.1016/0167-7012(92)90080-N CrossRefGoogle Scholar
- Salin ML, Brown-Peterson NJ (1993) Dealing with active oxygen intermediates: a halophilic perspective. Cell Mol Life Sci 49:523–529. https://doi.org/10.1007/BF01955155 CrossRefGoogle Scholar
- Samborska K, Witrowa-Rajchert D, Gonçalves A (2005) Spray-drying of α-amylase—the effect of process variables on the enzyme inactivation. Dry Technol 23:941–953. https://doi.org/10.1081/DRT-200054243 CrossRefGoogle Scholar
- Schuck P, Dolivet A, Méjean S, Hervé C, Jeantet R (2013) Spray drying of dairy bacteria: new opportunities to improve the viability of bacteria powders. Int Dairy J 31:12–17. https://doi.org/10.1016/j.idairyj.2012.01.006 CrossRefGoogle Scholar
- Stan-Lotter H, Fendrihan S (2013) Survival strategies of halophilic oligotrophic and desiccation resistant prokaryotes. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles. Life under multiple form of stress, Springer, Dordrecht, The Netherlands, pp 233–248. https://doi.org/10.1007/978-94-007-6488-0 Google Scholar
- Stan-Lotter H, Radax C, Gruber C, Legat A, Pfaffenhuemer M, Wieland H, Leuko S, Weidler G, Kömle N, Kargl G (2002) Astrobiology with haloarchaea from Permo-Triassic rock salt. Int J Astrobiol 1:S1473550403001307. https://doi.org/10.1017/S1473550403001307 CrossRefGoogle Scholar
- Staroselov MA, Basova NY, Skhatum AK, Fedorov YuE, Pachina VV, Markov AN (2016) Effect of prebiotic Baxinum-vet on the intestinal microbiocenosis of newborn calves (article in Russian). Russ J Probl Vet Sanit Hyg Ecol 1:72–75Google Scholar
- Teixeira P, Castro H, Kirby R (1995) Spray drying as a method for preparing concentrated cultures of Lactobacillus bulgaricus. J Appl Bacteriol 78:456–462. https://doi.org/10.1111/j.1365-2672.1995.tb03433.x CrossRefGoogle Scholar
- Teixeira P, Castro H, Kirby R (1996) Evidence of membrane lipid oxidation of spray-dried Lactobacillus bulgaricus during storage. Lett Appl Microbiol 22:34–38. https://doi.org/10.1111/j.1472-765X.1996.tb01103.x CrossRefGoogle Scholar
- Tindall BJ (1991) Cultivation and preservation of members of the family Halobacteriaceae. World J Microbiol Biotechnol 7:95–98. https://doi.org/10.1007/BF02310924 CrossRefPubMedGoogle Scholar
- Vasil’ev IK (2007) Baxinum (book in Russian). Nikopharm, MoscowGoogle Scholar