Advertisement

Extremophiles

, Volume 22, Issue 1, pp 13–27 | Cite as

Microbial community differentiation between active and inactive sulfide chimneys of the Kolumbo submarine volcano, Hellenic Volcanic Arc

  • Christos A. Christakis
  • Paraskevi N. PolymenakouEmail author
  • Manolis Mandalakis
  • Paraskevi Nomikou
  • Jon Bent Kristoffersen
  • Danai Lampridou
  • Georgios Kotoulas
  • Antonios Magoulas
Original Paper

Abstract

Over the last decades, there has been growing interest about the ecological role of hydrothermal sulfide chimneys, their microbial diversity and associated biotechnological potential. Here, we performed dual-index Illumina sequencing of bacterial and archaeal communities on active and inactive sulfide chimneys collected from the Kolumbo hydrothermal field, situated on a geodynamic convergent setting. A total of 15,701 OTUs (operational taxonomic units) were assigned to 56 bacterial and 3 archaeal phyla, 133 bacterial and 16 archaeal classes. Active chimney communities were dominated by OTUs related to thermophilic members of Epsilonproteobacteria, Aquificae and Deltaproteobacteria. Inactive chimney communities were dominated by an OTU closely related to the archaeon Nitrosopumilus sp., and by members of Gammaproteobacteria, Deltaproteobacteria, Planctomycetes and Bacteroidetes. These lineages are closely related to phylotypes typically involved in iron, sulfur, nitrogen, hydrogen and methane cycling. Overall, the inactive sulfide chimneys presented highly diverse and uniform microbial communities, in contrast to the active chimney communities, which were dominated by chemolithoautotrophic and thermophilic lineages. This study represents one of the most comprehensive investigations of microbial diversity in submarine chimneys and elucidates how the dissipation of hydrothermal activity affects the structure of microbial consortia in these extreme ecological niches.

Keywords

Hydrothermal chimneys Submarine volcano Microbial diversity Illumina sequencing Microbial communities 

Notes

Acknowledgements

The authors acknowledge the captain and crew of R/V Aegaeo and the ROV Team for their assistance during sampling. Especially acknowledged are T. Dailianis for providing the photographs of the chimney samples upon recovery and S. Kilias for his guidance during collection of the samples. We would like to thank M. Pettas, A. Kristallas, M. Maidanou for their assistance during sampling. This work was funded by the EU-FP7 project SeaBioTech (spider.science.strath.ac.uk/seabiotech) with Grant number 311932 and the General Secretariat for Research and Technology-GSRT and Siemens A.G. through the project “Programmatic agreements between Research Centres–GSRT 2015–2017”.

Author contributions

CC, PNP, MM, and PN performed the sampling. CC performed most of the laboratory analysis. CC and J-BK performed the sequencing analysis. PN and DL constructed the detailed bathymetric maps. PNP, GK and AM conceived the project and led the research process. CC, PNP, MM and PN processed the data and drafted the manuscript. All authors discussed the results and approved on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that no conflict of interest exists.

Supplementary material

792_2017_971_MOESM1_ESM.docx (433 kb)
Supplementary material 1 (DOCX 433 kb)
792_2017_971_MOESM2_ESM.xlsx (43 kb)
Supplementary material 2 (XLSX 43 kb)
792_2017_971_MOESM3_ESM.xlsx (144 kb)
Supplementary material 3 (XLSX 143 kb)

Supplementary material 4 (WMV 23622 kb)

Supplementary material 5 (WMV 24707 kb)

References

  1. Black M, Moolhuijzen P, Chapman B et al (2012) The genetics of symbiotic nitrogen fixation: comparative genomics of 14 Rhizobia strains by resolution of protein clusters. Genes (Basel) 3:138–166. doi: 10.3390/genes3010138 CrossRefGoogle Scholar
  2. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bonch-Osmolovskaya EA, Sokolova TG, Kostrikina NA, Zavarzin GA (1990) Desulfurella acetivorans gen. nov. and sp. nov.—a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155. doi: 10.1007/BF00247813 CrossRefGoogle Scholar
  4. Brazelton WJ, Baross JA (2010) Metagenomic comparison of two Thiomicrospira lineages inhabiting contrasting deep-sea hydrothermal environments. PLoS One 5:e13530. doi: 10.1371/journal.pone.0013530 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brazelton WJ, Ludwig KA, Sogin ML et al (2010) Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proc Natl Acad Sci 107:1612–1617. doi: 10.1073/pnas.0905369107 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Campbell BJ, Polson SW, Zeigler Allen L et al (2013) Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities. Front Microbiol 4:182. doi: 10.3389/fmicb.2013.00182 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. doi: 10.1038/ismej.2012.8 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carey S, Bell KLC, Nomikou P et al (2011) Exploration of the Kolumbo volcanic rift zone. In: Bell KLC, Fuller SA (eds) New frontiers in ocean exploration: the E/V Nautilus 2010 field season. Oceanography, vol 24, no 1 supplement, pp 24–25Google Scholar
  9. Carey S, Nomikou P, Bell KC et al (2013) CO2 degassing from hydrothermal vents at Kolumbo submarine volcano, Greece, and the accumulation of acidic crater water. Geology 41:1035–1038. doi: 10.1130/G34286.1 CrossRefGoogle Scholar
  10. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642. doi: 10.1093/nar/gkt1244 CrossRefPubMedGoogle Scholar
  11. Dahle H, Okland I, Thorseth IH et al (2015) Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge. ISME J 9:1593–1606CrossRefPubMedPubMedCentralGoogle Scholar
  12. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. doi: 10.1128/AEM.03006-05 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci 24:191–224. doi: 10.1146/annurev.earth.24.1.191 CrossRefGoogle Scholar
  15. Elshahed MS, Youssef NH, Luo Q et al (2007) Phylogenetic and metabolic diversity of Planctomycetes from anaerobic, sulfide- and sulfur-rich Zodletone Spring, Oklahoma. Appl Environ Microbiol 73:4707–4716. doi: 10.1128/AEM.00591-07 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Flores GE, Campbell JH, Kirshtein JD et al (2011) Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ Microbiol 13:2158–2171. doi: 10.1111/j.1462-2920.2011.02463.x CrossRefPubMedGoogle Scholar
  17. Flores GE, Shakya M, Meneghin J et al (2012) Inter-field variability in the microbial communities of hydrothermal vent deposits from a back-arc basin. Geobiology 10:333–346. doi: 10.1111/j.1472-4669.2012.00325.x CrossRefPubMedGoogle Scholar
  18. Frank KL, Rogers DR, Olins HC et al (2013) Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents. ISME J 7:1391–1401CrossRefPubMedPubMedCentralGoogle Scholar
  19. He T, Zhang X (2016) Characterization of bacterial communities in deep-sea hydrothermal vents from three oceanic regions. Mar Biotechnol (NY) 18:232–241. doi: 10.1007/s10126-015-9683-3 CrossRefGoogle Scholar
  20. Hedrich S, Schlömann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiology 157:1551–1564. doi: 10.1099/mic.0.045344-0 CrossRefPubMedGoogle Scholar
  21. Hübscher C, Ruhnau M, Nomikou P (2015) Volcano-tectonic evolution of the polygenetic Kolumbo submarine volcano/Santorini (Aegean Sea). J Volcanol Geotherm Res 291:101–111. doi: 10.1016/j.jvolgeores.2014.12.020 CrossRefGoogle Scholar
  22. Hügler M, Huber H, Molyneaux SJ et al (2007) Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol 9:81–92. doi: 10.1111/j.1462-2920.2006.01118.x CrossRefPubMedGoogle Scholar
  23. Jaeschke A, Jørgensen SL, Bernasconi SM et al (2012) Microbial diversity of Loki’s Castle black smokers at the Arctic Mid-Ocean Ridge. Geobiology 10:548–561. doi: 10.1111/gbi.12009 CrossRefPubMedGoogle Scholar
  24. Jiang L, Long M, Shao Z (2014) Draft genome sequence of Defluviimonas indica strain 20V17T, isolated from a deep-sea hydrothermal vent environment in the Southwest Indian Ocean. Genome Announc 2:e00479–e00514. doi: 10.1128/genomeA.00479-14 PubMedGoogle Scholar
  25. Kato S, Takano Y, Kakegawa T et al (2010) Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough. Appl Environ Microbiol 76:2968–2979. doi: 10.1128/AEM.00478-10 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kato S, Nakamura K, Toki T et al (2012) Iron-based microbial ecosystem on and below the seafloor: a case study of hydrothermal fields of the Southern Mariana Trough. Front Microbiol 3:89. doi: 10.3389/fmicb.2012.00089 PubMedPubMedCentralGoogle Scholar
  27. Kilias SP, Nomikou P, Papanikolaou D et al (2013) New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece. Sci Rep 3:2421. doi: 10.1038/srep02421 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kolde R (2015) Pheatmap: pretty heatmaps version 1.0.8. https://CRAN.R-project.org/package=pheatmap. Accessed 28 May 2017
  29. Kozich JJ, Westcott SL, Baxter NT et al (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lee MD, Walworth NG, Sylvan JB et al (2015) Microbial communities on seafloor basalts at Dorado Outcrop reflect level of alteration and highlight global lithic clades. Front Microbiol 6:1470. doi: 10.3389/fmicb.2015.01470 PubMedPubMedCentralGoogle Scholar
  31. Lesniewski RA, Jain S, Anantharaman K et al (2012) The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J 6:2257–2268. doi: 10.1038/ismej.2012.63 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Macur RE, Jay ZJ, Taylor WP et al (2013) Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. Geobiology 11:86–99. doi: 10.1111/gbi.12015 CrossRefPubMedGoogle Scholar
  33. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10CrossRefGoogle Scholar
  34. Mccollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61:4375–4391. doi: 10.1016/S0016-7037(97)00241-X CrossRefPubMedGoogle Scholar
  35. Miroshnichenko ML, L’Haridon S, Jeanthon C et al (2003) Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:747–752. doi: 10.1099/ijs.0.02367-0 CrossRefPubMedGoogle Scholar
  36. Nomikou P, Carey S, Papanikolaou D et al (2012) Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece. Glob Planet Change 90–91:135–151. doi: 10.1016/j.gloplacha.2012.01.001 CrossRefGoogle Scholar
  37. Nomikou P, Hübscher C, Ruhnau M, Bejelou K (2016) Tectono-stratigraphic evolution through successive extensional events of the Anydros Basin, hosting Kolumbo volcanic field at the Aegean Sea, Greece. Tectonophysics 671:202–217. doi: 10.1016/j.tecto.2016.01.021 CrossRefGoogle Scholar
  38. Oksanen J, Blanchet G, Friendly M et al (2017) Vegan: community ecology package version 2.4-4. https://CRAN.R-project.org/package=vegan. Accessed 28 May 2017
  39. Olins HC, Rogers DR, Frank KL et al (2013) Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys. Geobiology 11:279–293. doi: 10.1111/gbi.12034 CrossRefPubMedGoogle Scholar
  40. Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 75:361–422. doi: 10.1128/MMBR.00039-10 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Oulas A, Polymenakou PN, Seshadri R et al (2016) Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology. Environ Microbiol 18:1122–1136. doi: 10.1111/1462-2920.13095 CrossRefPubMedGoogle Scholar
  42. Pereira IAC, Ramos AR, Grein F et al (2011) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2:69. doi: 10.3389/fmicb.2011.00069 PubMedPubMedCentralGoogle Scholar
  43. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi: 10.1093/nar/gks1219 CrossRefPubMedGoogle Scholar
  44. Reveillaud J, Reddington E, McDermott J et al (2015) Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ Microbiol 18:1970–1987. doi: 10.1111/1462-2920.13173 CrossRefGoogle Scholar
  45. Rizzo AL, Caracausi A, Chavagnac V et al (2016) Kolumbo submarine volcano (Greece): an active window into the Aegean subduction system. Sci Rep 6:28013CrossRefPubMedPubMedCentralGoogle Scholar
  46. Salter SJ, Cox MJ, Turek EM et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87. doi: 10.1186/s12915-014-0087-z CrossRefPubMedPubMedCentralGoogle Scholar
  47. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi: 10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310CrossRefPubMedPubMedCentralGoogle Scholar
  49. Schmidt I (2002) Aerobic and anaerobic ammonia oxidizing bacteria—competitors or natural partners? FEMS Microbiol Ecol 39:175–181. doi: 10.1016/S0168-6496(01)00208-2 PubMedGoogle Scholar
  50. Sigurdsson H, Carey S, Alexandri M et al (2006) Marine investigations of Greece’s Santorini Volcanic Field. EOS Trans Am Geophys Union 87:337–348. doi: 10.1029/2006EO340001 CrossRefGoogle Scholar
  51. Spieck E, Bock E (2005) The lithoautotrophic nitrite-oxidizing bacteria. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s Manual® of systematic bacteriology: volume two: the Proteobacteria, part A introductory essays. Springer, Boston, pp 149–153CrossRefGoogle Scholar
  52. Suzuki Y, Inagaki F, Takai K et al (2004) Microbial diversity in inactive chimney structures from deep-sea hydrothermal systems. Microb Ecol 47:186–196. doi: 10.1007/s00248-003-1014-y CrossRefPubMedGoogle Scholar
  53. Sylvan JB, Toner BM, Edwards KJ (2012) Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides. MBio 3:e00279–e00311. doi: 10.1128/mBio.00279-11 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sylvan JB, Sia TY, Haddad AG et al (2013) Low temperature geomicrobiology follows host rock composition along a geochemical gradient in Lau Basin. Front Microbiol 4:61CrossRefPubMedPubMedCentralGoogle Scholar
  55. Takai K, Nakagawa S, Reysenbach AL, Hoek J (2006) Microbial ecology of Mid-Ocean Ridges and Back-Arc basins. In: Christie DM, Fisher CR, Lee S-M, Givens S (eds) Back-Arc spreading systems: geological, biological, chemical, and physical interactions. American Geophysical Union, pp 185–213Google Scholar
  56. Tanner MA, Goebel BM, Dojka MA, Pace NR (1998) Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Appl Environ Microbiol 64:3110–3113PubMedPubMedCentralGoogle Scholar
  57. Tivey MK (2004) Environmental conditions within active seafloor vent structures: sensitivity to vent fluid composition and fluid flow. Subseafloor Biosph Mid-Ocean Ridges. doi: 10.1029/144GM09 Google Scholar
  58. Toner BM, Lesniewski RA, Marlow JJ et al (2013) Mineralogy drives bacterial biogeography of hydrothermally inactive seafloor sulfide deposits. Geomicrobiol J 30:313–326. doi: 10.1080/01490451.2012.688925 CrossRefGoogle Scholar
  59. Vetriani C, Voordeckers JW, Crespo-Medina M et al (2014) Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). ISME J 8:1510–1521. doi: 10.1038/ismej.2013.246 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  61. Zhang Y, Zhao Z, Chen C-TA et al (2013) Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities. Front Microbiol 4:1–11. doi: 10.3389/fmicb.2013.00182 Google Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Christos A. Christakis
    • 1
    • 2
  • Paraskevi N. Polymenakou
    • 1
    Email author
  • Manolis Mandalakis
    • 1
  • Paraskevi Nomikou
    • 2
  • Jon Bent Kristoffersen
    • 1
  • Danai Lampridou
    • 2
  • Georgios Kotoulas
    • 1
  • Antonios Magoulas
    • 1
  1. 1.Hellenic Centre for Marine ResearchInstitute of Marine Biology, Biotechnology and AquacultureHeraklionGreece
  2. 2.Faculty of Geology and GeoenvironmentNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations