Extremophiles

, Volume 21, Issue 6, pp 1057–1067 | Cite as

100 kGy gamma-affected microbial communities within the ancient Arctic permafrost under simulated Martian conditions

  • Vladimir S. Cheptsov
  • Elena A. Vorobyova
  • Natalia A. Manucharova
  • Mikhail V. Gorlenko
  • Anatoli K. Pavlov
  • Maria A. Vdovina
  • Vladimir N. Lomasov
  • Sergey A. Bulat
Original Paper

Abstract

This research aimed to investigate the viability and biodiversity of microbial communities within ancient Arctic permafrost after exposure to a gamma-radiation dose of 100 kGy at low temperature (− 50 °C), low pressure (1 Torr) and dehydration conditions. The main objective was to assess the possibility for long-term survival of Earth-bound microorganisms in the subsurface of Martian regolith or inside small space bodies at constant absorption and accumulation of the gamma radiation dose. Investigated microbial communities had shown high resistance to a simulated Martian environment. After irradiation the total count of prokaryotic cells and number of metabolically active bacterial cells remained at the control level, while the number of bacterial CFUs decreased by 2 orders of magnitude, and the number of metabolically active cells of archaea decreased threefold. Besides, the abundance of culturable bacteria after irradiation was kept at a high level: not less than 3.7 × 105 cells/g. Potential metabolic activity of irradiated microbial communities in general were higher than in the control sample. A fairly high biodiversity of bacteria was detected in the exposed sample of permafrost, although the microbial community structure underwent significant changes after irradiation. In particular, actinobacteria populations of the genus Arthrobacter, which was not revealed in the control samples, became predominant in bacterial communities following the exposure. The results of the study testify that long-term preservation of microbial life inside Martian permafrost is possible. The data obtained can also be evaluated from the perspective of the potential for discovering viable Earth-bound microorganisms on other objects in the Solar system and inside of small bodies in outer space.

Keywords

Astrobiology Ancient Arctic permafrost Mars regolith Biodiversity Microorganisms Low temperature Low pressure Gamma radiation 

References

  1. Arkhangelov AA (1977) The subsurface glaciation of the North of Kolyma lowland in the late Cenozoic era (article in Russian). Probl Cryolithol 4:26–57Google Scholar
  2. Arkhangelov AA, Kusnetsova TP, Kartashova GG, Konzkhin MA (1979) The genesis and formation of the late Pleistocene ice-rich silt formation in Kolyma Lowlands (on the example of Chukochiy Cape) (article in Russian). Probl Cryolithol 8:110–135Google Scholar
  3. Atlas RM (2010) Handbook of microbiological media. CRC Press, Boca RatonCrossRefGoogle Scholar
  4. Auerbach C (1976) Mutation research. Problems, results and perspectives. Chapman and Hall, LondonGoogle Scholar
  5. Bauermeister A, Moeller R, Reitz G, Sommer S, Rettberg P (2011) Effect of relative humidity on Deinococcus radiodurans’ resistance to prolonged desiccation, heat, ionizing, germicidal, and environmentally relevant UV radiation. Microb Ecol 61(3):715–722PubMedCrossRefGoogle Scholar
  6. Baumstark-Khan C, Facius R (2002) Life under conditions of ionizing radiation. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin, pp 261–284CrossRefGoogle Scholar
  7. Beaty DW, Clifford SM, Borg LE, Catling DC, Craddock RA, Marais DJD, Farmer JD, Frey HV, Haberle RH, McKay CP, Newsom HE, Parker TJ, Segura T, Tanaka KL (2005) Key science questions from the second conference on early Mars: geologic, hydrologic, and climatic evolution and the implications for life. Astrobiology 5(6):663–689PubMedCrossRefGoogle Scholar
  8. Cox MM, Battista JR (2005) Deinococcus radiodurans—the consummate survivor. Nat Rev Microbiol 3(11):882–892PubMedCrossRefGoogle Scholar
  9. Dartnell LR, Desorgher L, Ward JM, Coates AJ (2007a) Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys Res Lett 34:L02207CrossRefGoogle Scholar
  10. Dartnell LR, Desorgher L, Ward JM, Coates AJ (2007b) Martian subsurface ionising radiation: biosignatures and geology. Biogeosciences 4:545–558CrossRefGoogle Scholar
  11. Dartnell LR, Hunter SJ, Lovell KV, Coates AJ, Ward JM (2010) Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria. Astrobiology 10(7):2010CrossRefGoogle Scholar
  12. Dieser M, Battista JR, Christner BC (2013) DNA double-strand break repair at − 15 °C. Appl Environ Microbiol 79(24):7662–7668PubMedPubMedCentralCrossRefGoogle Scholar
  13. DiRuggiero J, Wierzchos J, Robinson CK, Souterre T, Ravel J, Artieda O, Souza-Egipsy V, Ascaso C (2013) Microbial colonisation of chasmoendolithic habitats in the hyper-arid zone of the Atacama Desert. Biogeosciences 10:2439–2450CrossRefGoogle Scholar
  14. El-Registan GI, Mulyukin AL, Nikolaev YA, Suzina NE, Gal’chenko VF, Duda VI (2006) Adaptogenic functions of extracellular autoregulators of microorganisms. Microbiology 75(4):380–389CrossRefGoogle Scholar
  15. El-Sayed WS, Ghanem S (2009) Bacterial community structure change induced by gamma irradiation in hydrocarbon contaminated and uncontaminated soils revealed by PCR-denaturing gradient gel electrophoresis. Biotechnology 8:78–85CrossRefGoogle Scholar
  16. Ferreira AC, Nobre MF, Moore E, Rainey FA, Battista JR, daCosta MS (1999) Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3:235–238PubMedCrossRefGoogle Scholar
  17. Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57(8):2351–2359PubMedPubMedCentralGoogle Scholar
  18. Garland JL, Mills AL (1994) A community-level physiological approach for studying microbial communities. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass: compositional and functional analysis of soil microbial communities. Wiley, Chichester, pp 77–83Google Scholar
  19. Gilichinsky D (2002) Permafrost as a microbial habitat. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 932–956Google Scholar
  20. Gilichinsky D, Vorobyova E, Erokhina I, Fyodorov-Davydov D, Chaikovskaya N (1992) Long-term preservation of microbial ecosystems in permafrost. Adv Space Res 12(4):255–263PubMedCrossRefGoogle Scholar
  21. Giliichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton JP, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost. Astrobiology 7(2):275–311CrossRefGoogle Scholar
  22. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264CrossRefGoogle Scholar
  23. Gorlenko MV, Kozhevin PA (1994) Differentiation of soil microbial communities by multisubstrate testing. Microbiology 63(2):158–161Google Scholar
  24. Gorlenko MV, Kozhevin PA (2005) Multisubstrate testing of natural microbial communities (book in Russian). MAKS Press, MoscowGoogle Scholar
  25. Gorlenko MV, Majorova TN, Kozhevin PA (1997) Disturbances and their influence on substrate utilization patterns in soil microbial communities. In: Insam H, Rangger A (eds) microbial communities. Springer, Berlin, pp 84–93CrossRefGoogle Scholar
  26. Gorovaya AI, Skvortsov AV (1989) Radiomodifying effect of physiologically active humic substances (article in Russian). In: Rud GY (ed) Interuniversity thematic collection of scientific works. Kishinev Agricultural InstituteGoogle Scholar
  27. Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine. Oxford University Press, New YorkCrossRefGoogle Scholar
  28. Harris DR, Pollock SV, Wood EA, Goiffon RJ, Klingele AJ, Cabot EL, Schackwitz W, Martin J, Eggington J, Durfee TJ, Middle CM, Norton JE, Popelars MC, Li H, Klugman SA, Hamilton LL, Bane LB, Pennacchio LA, Albert TJ, Perna NT, Cox MM, Battista JR (2009) Directed evolution of ionizing radiation resistance in Escherichia coli. J Bacteriol 191(16):5240–5252PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hassler DM, Zeitlin C, Wimmer-Schweingruber RF, Ehresmann B, Rafkin S, Eigenbrode JL, Brinza DE, Weigle G, Böttcher S, Böhm E, Burmeister S, Guo J, Köhler J, Martin C, Reitz G, Cucinotta FA, Kim M, Grinspoon D, Bullock MA, Posner A, Gómez-Elvira J, Vasavada A, Grotzinger JP, Science Team MSL (2014) Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science 343(6169):1244797PubMedCrossRefGoogle Scholar
  30. Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53(3):847–851PubMedCrossRefGoogle Scholar
  31. Kryazhevskikh NA, Demkina EV, Loiko NG, Baslerov RV, Kolganova TV, Soina VS, Manucharova NA, Gal’chenko VF, El’-Registan GI (2013) Comparison of the adaptive potential of the Arthrobacter oxydans and Acinetobacter lwoffii isolates from permafrost sedimentary rock and the analogous collection strains. Microbiology 82(1):29–42CrossRefGoogle Scholar
  32. Kudryashov YB, Berenfeld BS (1982) Fundamentals of radiation biophysics. Study book (book in Russian). MSU, MoscowGoogle Scholar
  33. Kuipers GK, Lafleur MVM (1998) Characterization of DNA damage induced by gamma-radiation derived water radicals, using DNA repair enzymes. Int J Radiat Biol 74(4):511–519PubMedCrossRefGoogle Scholar
  34. Manaeva ES, Lomovtseva NO, Kostina NV, Gorlenko MV, Umarov MM (2014) Biological activity of soils in the settlements of southern (Microtus rossiaemeridionalis) and bank (Clethrionomys glareolus) voles. Biol Bull 41(1):80–88CrossRefGoogle Scholar
  35. Manucharova NA, Vlasenko AN, Men’ko EV, Zvyagintsev DG (2011) Specificity of the chitinolytic microbial complex of soils incubated at different temperatures. Microbiology 80(2):205–215CrossRefGoogle Scholar
  36. Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178(3):633–637PubMedPubMedCentralCrossRefGoogle Scholar
  37. McNamara NP, Black HIJ, Beresford NA, Parekh NR (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol 24(2):117–132CrossRefGoogle Scholar
  38. Mileikowsky C, Cucinotta FA, Wilson JW, Gladman B, Horneck G, Lindegren L, Melosh J, Rickman H, Valtonen M, Zheng JQ (2000) Natural transfer of viable microbes in space: 1. From Mars to Earth and Earth to Mars. Icarus 145(2):391–427PubMedCrossRefGoogle Scholar
  39. Mulyukin AL, Demkina EV, Kozlova AN, Soina VS (2001) Synthesis of anabiosis autoinducers by non-spore-forming bacteria as a mechanism regulating their activity in soil and subsoil sedimentary rocks. Microbiology 70(5):535–541CrossRefGoogle Scholar
  40. Musilova M, Wright G, Ward JM, Dartnell LR (2015) Isolation of radiation-resistant bacteria from Mars analog Antarctic Dry Valleys by preselection, and the correlation between radiation and desiccation resistance. Astrobiology 15(12):1076–1090PubMedPubMedCentralCrossRefGoogle Scholar
  41. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64(3):548–572PubMedPubMedCentralCrossRefGoogle Scholar
  42. Osman S, Peeters Z, La Duc MT, Mancinelli R, Ehrenfreund P, Venkateswaran K (2008) Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Appl Environ Microbiol 74(4):959–970PubMedCrossRefGoogle Scholar
  43. Parro V, de Diego-Castilla G, Moreno-Paz M, Blanco Y, Cruz-Gil P, Rodríguez-Manfredi JA, Fernández-Remolar D, Gómez F, Gómez MJ, Rivas LA, Demergasso C, Echeverría A, Urtuvia VN, Ruiz-Bermejo M, García-Villadangos M, Postigo M, Sánchez-Román M, Chong-Díaz G, Gómez-Elvira J (2011) A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. Astrobiology 11(10):969–996PubMedPubMedCentralCrossRefGoogle Scholar
  44. Pavlov AK, Blinov AV, Konstantinov AN (2002) Sterilization of Martian surface by cosmic radiation. Planet Space Sci 50(7):669–673CrossRefGoogle Scholar
  45. Pavlov AK, Kalinin VL, Konstantinov AN, Shelegedin VN, Pavlov AA (2006) Was Earth ever infected by martian biota? Clues from radioresistant bacteria. Astrobiology 6(6):911–918PubMedCrossRefGoogle Scholar
  46. Pavlov AK, Shelegedin VN, Vdovina MA, Pavlov AA (2010) Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modeling. Int J Astrobiol 9(1):51–58CrossRefGoogle Scholar
  47. Pavlov AA, Vasilyev G, Ostryakov VM, Pavlov AK, Mahaffy P (2012) Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays. Geophys Res Lett 39(13):L13202CrossRefGoogle Scholar
  48. Pitonzo BJ, Amy PS, Rudin M (1999a) Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site. Radiat Res 152(1):64–70PubMedCrossRefGoogle Scholar
  49. Pitonzo BJ, Amy PS, Rudin M (1999b) Resuscitation of microorganisms after gamma irradiation. Radiat Res 152(1):71–75PubMedCrossRefGoogle Scholar
  50. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park M-J, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kämpfer P, da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71(9):5225–5235PubMedPubMedCentralCrossRefGoogle Scholar
  51. Rivkina EM, Kraev GN, Krivushin KV, Laurinavichus KS, Fyodorov-Davydov DG, Kholodov AL, Shcherbakova VA, Gilichinsky DA (2006) Methane in permafrost of Northeastern Arctic (article in Russian). Earth Cryosphere 10(3):23–41Google Scholar
  52. Romanovskaya VA, Rokitko PV, Malashenko YR, Krishtab TP, Chernaya NA (1999) Sensitivity of soil bacteria isolated from the alienated zone around the chernobyl nuclear power plant to various stress factors. Microbiology 68(4):465–469Google Scholar
  53. Rummel JD, Beaty DW, Jones MA, Bakermans C, Barlow NG, Boston PJ, Chevrier VF, Clark BC, de Vera J-PP, Gough RV, Hallsworth JE, Head JW, Hipkin VJ, Kieft TL, McEwen AS, Mellon MT, Mikucki JA, Nicholson WL, Omelon CR, Peterson R, Roden EE, Lollar BS, Tanaka KL, Viola D, Wray JJ (2014) A new analysis of Mars “special regions”: findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 14(11):887–968PubMedCrossRefGoogle Scholar
  54. Sher AV (1971) Mammals and stratigraphy of the Far Northeast USSR and North America (book in Russian). Nauka, MoscowGoogle Scholar
  55. Smith HD, McKay CP (2005) Drilling in ancient permafrost on Mars for evidence of a second genesis of life. Planet Space Sci 53(12):1302–1308CrossRefGoogle Scholar
  56. Stotzky G, Mortensen JL (1959) Effect of gamma radiation on growth and metabolism of microorganisms in an organic soil. Proc Soil Sci Soc Am 23:125–127CrossRefGoogle Scholar
  57. Takai K, Inagaki F, Horikoshi K (2004) Distribution of unusual archaea in subsurface biosphere. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC (eds) The subseafloor biosphere at mid-ocean ridges, geophysical monograph 144. American Geophysical Union, Washington, DC, pp 369–381Google Scholar
  58. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  59. Tauscher C, Schuerger AC, Nicholson WL (2006) Survival and germinability of Bacillus subtilis spores exposed to simulated Mars solar radiation: implications for life detection and planetary protection. Astrobiology 6(4):592–605PubMedCrossRefGoogle Scholar
  60. Tesfai AT, Beamer SK, Matak KE, Jaczynski J (2011) Radio-resistance development of DNA repair deficient Escherichia coli DH5α in ground beef subjected to electron beam at sub-lethal doses. Int J Radiat Biol 87(6):571–578PubMedCrossRefGoogle Scholar
  61. Vago JL, Westall F, Pasteur Instrument Teams, Landing Site Selection Working Group, and Other Contributors, Coates AJ, Jaumann R, Korablev O, Ciarletti V, Mitrofanov I, Josset J-L, De Sanctis MS, Bibring J-P, Rull F, Goesmann F, Steininger H, Goetz W, Brinckerhoff W, Szopa C, Raulin F, Westall F, Edwards HGM, Whyte LG, Fairén AG, Bibring J-P, Bridges J, Hauber E, Ori GG, Werner S, Loizeau D, Kuzmin RO, Williams RME, Flahaut J, Forget F, Vago JL, Rodionov D, Korablev O, Svedhem H, Sefton-Nash E, Kminek G, Lorenzoni L, Joudrier L, Mikhailov V, Zashchirinskiy A, Alexashkin S, Calantropio F, Merlo A, Poulakis P, Witasse O, Bayle O, Bayón S, Meierhenrich U, Carter J, García-Ruiz JM, Baglioni P, Haldemann A, Ball AJ, Debus A, Lindner R, Haessig F, Monteiro D, Trautner R, Voland C, Rebeyre D, Goulty D, Didot F, Durrant S, Zekri E, Koschny D, Toni A, Visentin G, Zwick M, van Winnendael M, Azkarate M, Carreau C, The ExoMars Project Team (2017) Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17(6–7):471–510CrossRefGoogle Scholar
  62. Verseux C, Baqué M, Cifariello R, Fagliarone C, Raguse M, Moeller R, Billi D (2017) Evaluation of the resistance of Chroococcidiopsis spp. to sparsely and densely ionizing irradiation. Astrobiology 17(2):118–125PubMedCrossRefGoogle Scholar
  63. Vorobyova EA, Soina VS, Mulukin AL (1996) Microorganisms and enzyme activity in permafrost after removal of long-term cold stress. Adv Space Res 18(12):103–108CrossRefGoogle Scholar
  64. Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290CrossRefGoogle Scholar
  65. Wassmann M, Moeller R, Reitz G, Rettberg P (2010) Adaptation of Bacillus subtilis cells to archean-like UV climate: relevant hints of microbial evolution to remarkably increased radiation resistance. Astrobiology 10(6):605–615PubMedCrossRefGoogle Scholar
  66. Wierzchos J, de los Ríos A, Ascaso C (2012) Microorganisms in desert rocks: the edge of life on Earth. Int Microbiol 15:171–181Google Scholar
  67. Willerslev E, Hansen AJ, Rønn R, Brand TB, Barnes I, Wiuf C, Gilichinsky D, Mitchell D, Cooper A (2004) Long-term persistence of bacterial DNA. Curr Biol 14(1):R9–R10PubMedCrossRefGoogle Scholar
  68. Yardin MR, Kennedy IR, Thies JE (2000) Development of high quality carrier materials for field delivery of key microorganisms used as bio-fertilisers and bio-pesticides. Radiat Phys Chem 57:565–568CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Vladimir S. Cheptsov
    • 1
    • 2
  • Elena A. Vorobyova
    • 1
    • 2
  • Natalia A. Manucharova
    • 1
  • Mikhail V. Gorlenko
    • 1
  • Anatoli K. Pavlov
    • 3
  • Maria A. Vdovina
    • 3
  • Vladimir N. Lomasov
    • 4
  • Sergey A. Bulat
    • 5
    • 6
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Space Research InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  4. 4.S.-Petersburg State Polytechnical UniversitySt. PeterburgRussia
  5. 5.Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”GatchinaRussia
  6. 6.Institute of Physics and TechnologyUral Federal UniversityEkaterinburgRussia

Personalised recommendations