, Volume 21, Issue 6, pp 1005–1015 | Cite as

Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula

  • Vívian N. Gonçalves
  • Gislaine A. Vitoreli
  • Graciéle C. A. de Menezes
  • Carlos R. B. Mendes
  • Eduardo R. Secchi
  • Carlos A. Rosa
  • Luiz H. Rosa
Original Paper


Thirty-six seawater samples collected at different depths of the Gerlache and Bransfield Straits in the Northern Antarctic Peninsula were analyzed, and the average of the total fungal counts ranged from 0.3 to >300 colony forming units per liter (CFU/L) in density. The fungal were purified and identified as 15 taxa belonged to the genera Acremonium, Aspergillus, Cladosporium, Cystobasidium, Exophiala, Glaciozyma, Graphium, Lecanicillium, Metschnikowia, PenicilliumPurpureocillium and Simplicillium. Penicillium chrysogenum, Cladosporium sphaerospermum, and Graphium rubrum were found at high densities in at least two different sites and depths. Our results show at the first time that in the seawater of Antarctic Ocean occur diverse fungal assemblages despite extreme conditions, which suggests the presence of a complex aquatic fungi food web, including species reported as barophiles, symbionts, weak and strong saprobes, parasites and pathogens, as well as those found in the polluted environments of the world. Additionally, some taxa were found in different sites, suggesting that the underwater current might contribute to fungal (and microbial) dispersal across the Antarctic Ocean, and nearby areas such as South America and Australia.


Antarctic Peninsula Fungi Extremophile Seawater Taxonomy 



We acknowledge the financial support from CNPq, PROANTAR 407230/2013-0, INCT Criosfera, FAPEMIG (0050-13), CAPES (23038.003478/2013-92) and PRPq/UFMG.

Supplementary material

792_2017_959_MOESM1_ESM.docx (822 kb)
Supplementary material 1 (DOCX 821 kb)
792_2017_959_MOESM2_ESM.docx (276 kb)
Supplementary material 2 (DOCX 276 kb)
792_2017_959_MOESM3_ESM.docx (310 kb)
Supplementary material 3 (DOCX 309 kb)


  1. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064CrossRefGoogle Scholar
  3. Baiswar P, Ngachan SV, Rymbai H, Chandra S (2014) Simplicillium lanosoniveum, a hyperparasite on Aecidiumelaeagni-latifoliae in India. Australas Plant Dis Notes 9:144CrossRefGoogle Scholar
  4. Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron (iii)-binding ligands. Nature 413:409–413CrossRefPubMedGoogle Scholar
  5. Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc Lond B Biol Sci 274:3069–3077CrossRefGoogle Scholar
  6. Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin HD, Dugan FM, Schroers HJ, Braun U, Crous PW (2010) Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol 67:1–94CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bhadury P, Bik H, Lambshead JD, Austen MC, Smerdon GR, Rogers AD (2011) Molecular diversity of fungal phylotypes co-amplified alongside nematodes from coastal and deep-sea marine environments. PLoS One 6:e26445CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bridge PD, Denton GJ (2007) Isolation of diverse viable fungi from the larvae of the introduced chironomid Eretmoptera murphyi on Signy Island. Polar Biol 30:935CrossRefGoogle Scholar
  9. Castellani A (1967) Maintenance and cultivation of common pathogenic fungi in distilled water. Am J Trop Med Hyg 42:181–184Google Scholar
  10. De Hoog GS, Guarro J, Gene J, Figueras MJ (2000) Atlas of clinical fungi Centraal bureau voor Schimmelcultures Universitat Rovira I Virgili. Reus, Spain, pp 708–711Google Scholar
  11. De Hoog GS, Zeng JS, Harrak MJ, Sutton DA (2006) Exophiala xenobiotica sp. nov, an opportunistic black yeast inhabiting environments rich in hydrocarbons. Antonie Van Leeuwenhoek 90:257–268CrossRefPubMedGoogle Scholar
  12. Donachie SP, Zdanowski MK (1998) Potential digestive function of bacteria in krill, Euphausia superba stomach. Aquat Microb Ecol 14:129–136CrossRefGoogle Scholar
  13. Duarte AWF, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LC, Pessoa A, Felipe MG, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035CrossRefPubMedGoogle Scholar
  14. Duarte AWF, Passarini MRZ, Delforno TP, Pellizzari FM, Cipro CVZ, Montone RC, Petry MV, Putzke J, Rosa LH, Sette LD (2016) Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. Env Microbiol Rep 8:874–885CrossRefGoogle Scholar
  15. Fell JW, Hunter IL (1968) Isolation of heterothallic yeast strains of Metschnikowia kamienski and their mating reactions with Chlamydozyma wickerham spp. Antonie Van Leeuwenhoek 34:365–376CrossRefPubMedGoogle Scholar
  16. Fell W, Statzell AC, Hunter IL, Phaff L (1969) Leucosporidium gen. n., the hetero basidiomycetous stage of several yeasts of the genus Candida. Antonie van Laeuwenhoek 35:433–462CrossRefGoogle Scholar
  17. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:C174Google Scholar
  18. Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TM, Zani CL, Junior PAS, Romanha AJ, Carvalho AGO, Gil LHVG, Rosa AC, Minnis AM, Rosa LH (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic Peninsula. Microb Ecol 67:775–787CrossRefPubMedGoogle Scholar
  19. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  20. Godinho VM, Furbino L, Santiago IF, Pelizzari FM, Yokoya NS, Pupo D, Dicla A, Alves TM, Junior PA, Romanha AJ, Zani CL, Cantrell CL, Rosa CA, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica ISME 7:77–145Google Scholar
  21. Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer CEGR, Barbosa EC, Oliveira JG, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Kroon EG, Cantrell CL, Wedge DE, Duke SO, Ali A, Rosa CA, Rosa LH (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596CrossRefPubMedGoogle Scholar
  22. Gonçalves VN, Campos LS, Melo IS, Pellizari VH, Rosa CA, Rosa LH (2013) Penicillium solitum: a mesophilic, psychrotolerant fungus present in marine sediments from Antarctica. Polar Biol 36:1823–1831CrossRefGoogle Scholar
  23. Gonçalves VN, Carvalho CR, Johann S, Mendes G, Alves TM, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Cantrell CL, Rosa CA, Rosa LH (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1–10CrossRefGoogle Scholar
  24. Gonçalves VN, Cantrell CL, Wedge DE, Ferreira MC, Soares MA, Jacob MR, Oliveira FS, Galante D, Rodrigues F, Alves TMA, Zani CL, Júnior PAS, Murta S, Romanha AJ, Barbosa EC, Kroon EG, Oliveira JG, Gomez-Silva B, Galetovic A, Rosa CA, Rosa LH (2016) Fungi associated with rocks of the Atacama Desert: taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ Microbiol 18:232–245CrossRefPubMedGoogle Scholar
  25. Gunde-Cimerman N, Zalar P, De Hoog GS, Plemenitaš A (2000) Hypersaline water in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240Google Scholar
  26. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4:1–9Google Scholar
  27. Holinsworth B, Martin JD (2009) Siderophore production by marine-derived fungi. Biometals 22:625–632CrossRefPubMedPubMedCentralGoogle Scholar
  28. Honjo S (2004) Particle export and the biological pump in the Southern Ocean. Antarct Sci 16:501–516CrossRefGoogle Scholar
  29. Houbraken J, Frisvad JC, Samson RA (2011) Fleming’s penicillin producing strain is not Penicillium chrysogenum but P rubens. IMA Fungus 2:87–95CrossRefPubMedPubMedCentralGoogle Scholar
  30. Khan A, Williams K, Nevalainen H (2003) Testing the nematophagous biological control strain Paecilomyces lilacinus 251 for paecilotoxin production. FEMS Microbiol Lett 227:107–111CrossRefPubMedGoogle Scholar
  31. Khan Z, Ahmad S, Al-Ghimlas F, Al-Mutairi S, Joseph L, Chandy R, Guarro J (2012) Purpureocillium lilacinum as a cause of cavitary pulmonary disease: a new clinical presentation and observations on atypical morphologic characteristics of the isolate. J Clin Microbiol 50:1800–1804CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CAB International, WallingfordGoogle Scholar
  33. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academy PressGoogle Scholar
  34. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study. Elsevier, AmsterdamGoogle Scholar
  35. Lachance MA, Bowles JM, Starmer WT, Barker JS (1999) Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian hibiscus flowers. Can J Microbiol 45:172–177CrossRefPubMedGoogle Scholar
  36. Lim SY, Lee S, Kong HG, Lee J (2014) Entomopathogenicity of Simplicillium lanosoniveum Isolated in Korea. Mycobiology 42:317–321CrossRefPubMedPubMedCentralGoogle Scholar
  37. Loeb V, Siegel V, Holm-Hansen O, Hewitt R, Fraser W, Trivelpiece W, Trivelpiece S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900CrossRefGoogle Scholar
  38. Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648CrossRefGoogle Scholar
  39. Luangsa-ard J, Houbraken J, Van Doorn T, Hong SB, Borman AM, Hywel-Jones NL, Samson RA (2011) Purpureocillium, a new genus for themedically important Paecilomyces lilacinus. FEMS Microbiol Lett 321:141–149CrossRefPubMedGoogle Scholar
  40. Madariaga-Mazón A, González-Andrade M, González MC, Glenn AE, Cerda-García-Rojas CM, Mata R (2013) Absolute configuration of acremoxanthone C, a potent calmodulin inhibitor from Purpureocillium lilacinum. J Nat Prod 76:1454–1460CrossRefPubMedGoogle Scholar
  41. McRae CF, Hocking AD, Seppelt RD (1999) Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species, Penicillium antarcticum. Polar Biol 21:97–111CrossRefGoogle Scholar
  42. Mendes CRB, de Souza MS, Garcia VMT, Leal MC, Brotas B, Garcia CAE (2012) Dynamics of phytoplankton communities during late summer around the tip of the Antarctic Peninsula. Deep-Sea Res I 65:1–14CrossRefGoogle Scholar
  43. Meyer GH, Morrow MB, Wyss O (1967) Bacteria, fungi and other biota in the vicinity of Mirny Observatory. Antarct J US 2:248–251Google Scholar
  44. Mikami Y, Yazawa K, Fukushima K, Arai T, Udagawa SI, Samson RA (1989) Paecilotoxin production in clinical or terrestrial isolates of Paecilomyces lilacinus strains. Mycopathologia 108:195–199CrossRefPubMedGoogle Scholar
  45. Min YJ, Park MS, Fong JJ, Quan Y, Jung S, Lim YW (2014) Diversity and saline resistance of endophytic fungi associated with Pinus thunbergii in coastal shelterbelts of Korea. J Microbiol Biotechnol 24:324–333CrossRefPubMedGoogle Scholar
  46. Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1973–1980CrossRefGoogle Scholar
  47. Möller C, Dreyfuss MM (1996) Microfungi from Antarctic lichens, mosses and vascular plants. Mycologia 88:922–933CrossRefGoogle Scholar
  48. Murray AE, Grzymski JJ (2007) Diversity and genomics of Antarctic marine microorganisms. Philos Trans R Soc B 362:2259–2271CrossRefGoogle Scholar
  49. Nagahama T, Hamamoto M, Nakase T, Takaki Y, Horikoshi K (2001) Rhodotorula lammellibrachii sp. nov, a new yeast species from a tubeworm collected at the deep-sea floor in Sagami bay and its phylogenetic analysis. Antonie Van Leeuwenhoek 80:317–323CrossRefPubMedGoogle Scholar
  50. Nonaka K, Kaifuchi S, Ōmura S, Masuma R (2013) Five new Simplicillium species (Cordycipitaceae) from soils in Tokyo, Japan. Mycoscience 54:42–53CrossRefGoogle Scholar
  51. Pugh GJF, Allsopp D (1982) Microfungi on Signy Island, South Orkney Islands British Antarctic. Surv Bull 57:55–67Google Scholar
  52. Raghukumar C, Raghukumar S (1998) Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat Microb Ecol 15:153–163CrossRefGoogle Scholar
  53. Rosa LH, Vaz ABM, Caligiorne RB, Campolina S, Rosa CA (2009) Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv (Poaceae). Polar Biol 32:161–167CrossRefGoogle Scholar
  54. Sampaio JP (2011) Rhodotorula Harrison 1928. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study. Elsevier, Amsterdam, pp 1873–1927CrossRefGoogle Scholar
  55. Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CHW, Perrone G, Seifert KA, Susca A, Tanney JB, Varga J, Kocsub S, Szigeti G, Yaguchi TJC, Frisvad JC (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173CrossRefPubMedPubMedCentralGoogle Scholar
  56. Santiago IF, Alves TM, Rabello A, Junior PAS, Romanha AJ, Zani CL, Rosa LH (2012) Leishmanicidal and antitumoral activities of endophytic fungi associated with the Antarctic angiosperms Deschampsia Antarctica Desv and Colobanthus quitensis (Kunth) Bartl. Extremophiles 16:95–103CrossRefPubMedGoogle Scholar
  57. Sarmiento JL, Toggweiler JR (1984) A new model for the role of the oceans in determining atmospheric pCO2. Nature 308:621–624CrossRefGoogle Scholar
  58. Satow MM, Attili-Angelis D, de Hoog GS, Angelis DF, Vicente VA (2008) Selective factors involved in oil flotation isolation of black yeasts from the environment. Stud Mycol 61:157–163CrossRefPubMedPubMedCentralGoogle Scholar
  59. Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368CrossRefPubMedGoogle Scholar
  60. Smith RC, Fraser WR, Stammer John SE (2003) Climate variability and ecological response of the marine ecosystem in the western Antarctic Peninsula (WAP) region. In: Greenland D, Goodin DG, Smith RC (eds) Climate variability and ecosystem response at long-term ecological research sites. Oxford University Press, New York, pp 158–173Google Scholar
  61. Sudhadham M, Haase G, Prakitsin S, de Hoog GS (2008) The neurotropic black yeast Exophiala dermatitidis indicate a possible origin of in the tropical rain forest. Stud Mycol 61:145–155CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the Clavicipitaceous fungi. Stud Mycol 57:5–59CrossRefPubMedPubMedCentralGoogle Scholar
  63. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  64. Teles APC, Takahashi JA (2013) Paecilomide, a new acetylcholinesterase inhibitor from Paecilomyces lilacinus. Microbiol Res 168:204–210CrossRefPubMedGoogle Scholar
  65. Thomas-Hall SR (2004) Physiological and biochemical characterization of Antarctic yeast PhD thesis School of Biological, Biomedical and Molecular Sciences, The University of New England, AustraliaGoogle Scholar
  66. Turchetti B, Hall SRT, Connell LB, Branda E, Buzzini P, Theelen B, Muller WH, Boekhout T (2011) Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen nov, Glaciozyma martini sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15:573–586CrossRefPubMedGoogle Scholar
  67. Vaz ABM, Rosa LH, Vieira MLA, Garcia V, Brandão LR, Teixeira LCRS, Moliné M, Libkind D, Maria VB, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947CrossRefPubMedPubMedCentralGoogle Scholar
  68. Vrijmoed LLP, Hodgkiss IJ, Thrower LB (1982a) Factors affecting the distribution of lignicolous marine fungi in Hong Kong. Hydrobiologia 87:143–160CrossRefGoogle Scholar
  69. Vrijmoed LL, Hodgkiss IJ, Thrower LB (1982b) Seasonal patterns of primary colonization by lignicolous marine fungi in Hong Kong. Hydrobiologia 89:253–262CrossRefGoogle Scholar
  70. Vrijmoed LLP, Hodgkiss IJ, Thrower LB (1986) Occurrence of fungi on submerged pine and teak blocks in Hong Kong coastal waters. Hydrobiologia 135:109–122CrossRefGoogle Scholar
  71. Ward NA, Robertson CL, Chanda AK, Schneider RW (2012) Effects of Simplicillium lanosoniveum on Phakopsora pachyrhizi, the soybean rust pathogen, and its use as a biological control agent. Phytopathology 102:749–760CrossRefPubMedGoogle Scholar
  72. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  73. Xu L, Meng W, Cao C, Wang J, Shan W, Wang Q (2015) Antibacterial and antifungal compounds from marine fungi. Mar Drugs 13:3479–3513CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yurkov AM, Kachalkin AV, Daniel HM, Groenewald M, Libkind D, de Garcia V, Zalar P, Gouliamova DE, Boekhout T, Begerow D (2015) Two yeast species Cystobasidium psychroaquaticum fa sp. nov. and Cystobasidium rietchieii fa sp. nov. isolated from natural environments, and the transfer of Rhodotorula minuta clade members to the genus Cystobasidium. Antonie Van Leeuwenhoek 107:173–185CrossRefPubMedGoogle Scholar
  75. Zare R, Gams W (2001) A revision of Verticillium section Prostata IV The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73:1–50Google Scholar
  76. Zeng JS, Sutton DA, Fothergill AW, Rinaldi MG, Harrak MJ, de Hoog GS (2007) Spectrum of clinically relevant Exophiala species in the USA. J Clin Microbiol 45:3713–3720CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhao D, Liu B, Li LY, Zhu XF, Wang YY, Wang JQ, Duan YX, Chen LJ (2013) Simplicillium chinense: a biological control agent against plant parasitic nematodes Biocontrol. Sci Technol 23:980–986Google Scholar
  78. Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61CrossRefGoogle Scholar
  79. Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M, Frisvad JC, Onofri S (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Vívian N. Gonçalves
    • 1
  • Gislaine A. Vitoreli
    • 1
  • Graciéle C. A. de Menezes
    • 1
  • Carlos R. B. Mendes
    • 2
  • Eduardo R. Secchi
    • 2
  • Carlos A. Rosa
    • 1
    • 2
  • Luiz H. Rosa
    • 1
  1. 1.Department of MicrobiologyFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Institute of OceanographyFederal University of Rio Grande (FURG)Rio GrandeBrazil

Personalised recommendations