, Volume 21, Issue 4, pp 775–788 | Cite as

Thermal adaptation strategies of the extremophile bacterium Thermus filiformis based on multi-omics analysis

  • F. Mandelli
  • M. B. Couger
  • D. A. A. Paixão
  • C. B. Machado
  • C. M. Carnielli
  • J. A. Aricetti
  • I. Polikarpov
  • R. Prade
  • C. Caldana
  • A. F. Paes Leme
  • A. Z. Mercadante
  • D. M. Riaño-Pachón
  • Fabio Marcio Squina
Original Paper


Thermus filiformis is an aerobic thermophilic bacterium isolated from a hot spring in New Zealand. The experimental study of the mechanisms of thermal adaptation is important to unveil response strategies of the microorganism to stress. In this study, the main pathways involved on T. filiformis thermoadaptation, as well as, thermozymes with potential biotechnological applications were revealed based on omics approaches. The strategy adopted in this study disclosed that pathways related to the carbohydrate metabolism were affected in response to thermoadaptation. High temperatures triggered oxidative stress, leading to repression of genes involved in glycolysis and the tricarboxylic acid cycle. During heat stress, the glucose metabolism occurred predominantly via the pentose phosphate pathway instead of the glycolysis pathway. Other processes, such as protein degradation, stringent response, and duplication of aminoacyl-tRNA synthetases, were also related to T. filiformis thermoadaptation. The heat-shock response influenced the carotenoid profile of T. filiformis, favoring the synthesis of thermozeaxanthins and thermobiszeaxanthins, which are related to membrane stabilization at high temperatures. Furthermore, antioxidant enzymes correlated with free radical scavenging, including superoxide dismutase, catalase and peroxidase, and metabolites, such as oxaloacetate and α-ketoglutarate, were accumulated at 77 °C.


Transcriptomics Proteomics Metabolomics Thermozeaxanthins Peroxyl radical scavenging activity 



We gratefully acknowledge the provision of time at the NGS and MAS facilities (CTBE and LNBio, respectively) of the National Center for Research in Energy and Materials. This work was financially supported by grants from CNPq (442333/2014-5 and 310186/2014-5) and FAPESP (10/18198-3). FM received a fellowship from CNPq (142685/2010-0).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

792_2017_942_MOESM1_ESM.pdf (646 kb)
Supplementary material 1 (PDF 645 kb)
792_2017_942_MOESM2_ESM.docx (18 kb)
Supplementary material 2 (DOCX 17 kb)
792_2017_942_MOESM3_ESM.xlsx (11 kb)
Supplementary material 3 (XLSX 10 kb)
792_2017_942_MOESM4_ESM.xlsx (355 kb)
Supplementary material 4 (XLSX 354 kb)
792_2017_942_MOESM5_ESM.xlsx (56 kb)
Supplementary material 5 (XLSX 55 kb)
792_2017_942_MOESM6_ESM.xlsx (13 kb)
Supplementary material 6 (XLSX 12 kb)
792_2017_942_MOESM7_ESM.xlsx (17 kb)
Supplementary material 7 (XLSX 17 kb)


  1. Adamberg K, Kask S, Laht T, Paalme T (2003) The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. Int J Food Microbiol 85:171–183. doi: 10.1016/S0168-1605(02)00537-8 CrossRefPubMedGoogle Scholar
  2. Atkinson GC, Tenson T, Hauryliuk V (2011) The RelA/SpoT Homolog (RSH) superfamily: distribution and functional evolution of ppgpp synthetases and hydrolases across the tree of life. PLoS One. doi: 10.1371/journal.pone.0023479 Google Scholar
  3. Becker HD, Kern D (1998) Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways. Proc Natl Acad Sci USA 95:12832–12837. doi: 10.1073/pnas.95.22.12832 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Becker HD, Roy H, Moulinier L et al (2000) Thermus thermophilus contains an eubacterial and an archaebacterial aspartyl-tRNA synthetase. Biochemistry 39:3216–3230. doi: 10.1021/bi992573y CrossRefPubMedGoogle Scholar
  5. Benitez A, Sánchez O (2009) Evaluation of agro-industrial by-products for α-galactosidase production by aspergillus oryzae in submerged culture. In: 9th international conference on chemical and process engineering, pp 1155–1160Google Scholar
  6. Blasco F, Kauffmann I, Schmid RD (2004) CYP175A1 from Thermus thermophilus HB27, the first beta-carotene hydroxylase of the P450 superfamily. Appl Microbiol Biotechnol 64:671–674. doi: 10.1007/s00253-003-1529-7 CrossRefPubMedGoogle Scholar
  7. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brüggemann H, Chen C (2006) Comparative genomics of Thermus thermophilus: plasticity of the megaplasmid and its contribution to a thermophilic lifestyle. J Biotechnol 124:654–661. doi: 10.1016/j.jbiotec.2006.03.043 CrossRefPubMedGoogle Scholar
  9. Caldas TD, El Yaagoubi A, Richarme G (1998) Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273:11478–11482. doi: 10.1074/jbc.273.19.11478 CrossRefPubMedGoogle Scholar
  10. Chen J, Shen J, Solem C, Jensen PR (2013) Oxidative stress at high temperatures in lactococcus lactis due to an insufficient supply of riboflavin. Appl Environ Microbiol 79:6140–6147. doi: 10.1128/AEM.01953-13 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cuadros-Inostroza A, Caldana C, Redestig H et al (2009) TargetSearch—a bioconductor package for the efficient preprocessing of GC–MS metabolite profiling data. BMC Bioinform 10:428. doi: 10.1186/1471-2105-10-428 CrossRefGoogle Scholar
  12. Dalebroux ZD, Swanson MS (2012) ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol 10:203–212. doi: 10.1038/nrmicro2720 CrossRefPubMedGoogle Scholar
  13. de Souza TA, Soprano AS, de Lira NPV et al (2012) The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U) RNA. PLoS One 7:e32305. doi: 10.1371/journal.pone.0032305 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Developement Core Team R (2015) R: a language and environment for statistical computing. R Found Stat Comput 1:409. doi: 10.1007/978-3-540-74686-7 Google Scholar
  15. Egas M, Da Costa M, Cowan D, Pires E (1998) Extracellular α-amylase from Thermus filiformis Ork A2: purification and biochemical characterization. Extremophiles 2:23–32. doi: 10.1007/s007920050039 CrossRefPubMedGoogle Scholar
  16. Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55:561–585PubMedPubMedCentralGoogle Scholar
  17. Fiorentino A, D’Abrosca B, Pacifico S et al (2006) Spectroscopic identification and antioxidant activity of glucosylated carotenoid metabolites from Cydonia vulgaris fruits. J Agric Food Chem 54:9592–9597. doi: 10.1021/jf062125e CrossRefPubMedGoogle Scholar
  18. Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209PubMedGoogle Scholar
  19. Fu H, Xie B, Fan G et al (2010) Effect of esterification with fatty acid of B-cryptoxanthin on its thermal stability and antioxidant activity by chemiluminescence method. Food Chem 122:602–609. doi: 10.1016/j.foodchem.2010.03.019 CrossRefGoogle Scholar
  20. Fuciños P, Abadín CM, Sanromán A et al (2005) Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: partial purification and preliminary biochemical characterisation. J Biotechnol 117:233–241. doi: 10.1016/j.jbiotec.2005.01.019 CrossRefPubMedGoogle Scholar
  21. Gandhi A, Shah NP (2016) Integrating omics to unravel the stress response mechanisms in probiotic bacteria: approaches, challenges, and prospects. Crit Rev Food Sci Nutr. doi: 10.1080/10408398.2015.1136805 Google Scholar
  22. Gao H, Wang Y, Liu X et al (2004) Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J Bacteriol 186:7796–7803CrossRefPubMedPubMedCentralGoogle Scholar
  23. Giavalisco P, Li Y, Matthes A et al (2011) Elemental formula annotation of polar and lipophilic metabolites using (13) C, (15) N and (34) S isotope labelling, in combination with high-resolution mass spectrometry. Plant J 68:364–376. doi: 10.1111/j.1365-313X.2011.04682.x CrossRefPubMedGoogle Scholar
  24. Grüning N-M, Du D, Keller MA et al (2014) Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis. Open Biol 4:130232. doi: 10.1098/rsob.130232 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hamid AA, Aiyelaagbe OO, Usman LA et al (2010) Antioxidants: its medicinal and pharmacological applications. Afr J Pure Appl Chemostry 4:142–151Google Scholar
  26. Hanna SL, Sherman NE, Kinter MT, Goldberg JB (2000) Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Microbiology 146:2495–2508CrossRefPubMedGoogle Scholar
  27. Hara M, Yuan H, Yang Q et al (1999) Stabilization of liposomal membranes by thermozeaxanthins: carotenoid-glucoside esters. Biochim Biophys Acta 1461:147–154CrossRefPubMedGoogle Scholar
  28. Hauryliuk V, Atkinson GC, Murakami KS et al (2015) Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13:298–309. doi: 10.1038/nrmicro3448 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hickey DA, Singer GAC (2004) Genomic and proteomic adaptations to growth at high temperature. Genome Biol 5:1–7. doi: 10.1186/gb-2004-5-10-117 CrossRefGoogle Scholar
  30. Hirshfield IN, Bloch PL, Van Bogelen RA, Neidhardt FC (1981) Multiple forms of lysyl-transfer ribonucleic acid synthetase in Escherichia coli. J Bacteriol 146:345–351PubMedPubMedCentralGoogle Scholar
  31. Jia B, Liu J, Van Duyet L et al (2015) Proteome profiling of heat, oxidative, and salt stress responses in Thermococcus kodakarensis KOD1. Front Microbiol 6:1–12. doi: 10.3389/fmicb.2015.00605 Google Scholar
  32. Jozefczuk S, Klie S, Catchpole G et al (2010) Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 6:364. doi: 10.1038/msb.2010.18 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kanehisa M, Goto S (2000) Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. doi: 10.1093/nar/28.1.27 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kanehisa M, Sato Y, Kawashima M et al (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. doi: 10.1093/nar/gkv1070 CrossRefPubMedGoogle Scholar
  35. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392. doi: 10.1021/ac025747h CrossRefPubMedGoogle Scholar
  36. Kopylova E, Noe L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28(24):3211–3217CrossRefPubMedGoogle Scholar
  37. Kriel A, Bittner AN, Kim SH et al (2012) Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol Cell 48:231–241. doi: 10.1016/j.molcel.2012.08.009 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Leveque F, Gazeau M, Fromant M et al (1991) Control of Escherichia coli lysyl-tRNA synthetase expression by anaerobiosis. J Bacteriol 173:7903–7910CrossRefPubMedPubMedCentralGoogle Scholar
  40. Li K, Jiang T, Yu B et al (2012) Transcription elongation factor GreA has functional chaperone activity. PLoS One 7:e47521. doi: 10.1371/journal.pone.0047521 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. doi: 10.1093/nar/gkt214 Google Scholar
  42. Liu C, Niu Y, Zhou X et al (2015) Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism. Sci Rep 5:12929. doi: 10.1038/srep12929 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Long LH, Halliwell B (2012) The effects of oxaloacetate on hydrogen peroxide generation from ascorbate and epigallocatechin gallate in cell culture media: potential for altering cell metabolism. Biochem Biophys Res Commun 417:446–450. doi: 10.1016/j.bbrc.2011.11.136 CrossRefPubMedGoogle Scholar
  44. Mailloux RJ, Bériault R, Lemire J et al (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One 2:e690. doi: 10.1371/journal.pone.0000690 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mandelli F, Miranda VS, Rodrigues E, Mercadante AZ (2012a) Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World J Microbiol Biotechnol 28:1781–1790. doi: 10.1007/s11274-011-0993-y CrossRefPubMedGoogle Scholar
  46. Mandelli F, Yamashita F, Pereira J, Mercadante A (2012b) Evaluation of biomass production, carotenoid level and antioxidant capacity produced by Thermus filiformis using fractional factorial design. Braz J Microbiol 43:126–134. doi: 10.1590/S1517-83822012000100014 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mandelli F, Franco Cairo JPL, Citadini APS et al (2013) The characterization of a thermostable and cambialistic superoxide dismutase from Thermus filiformis. Lett Appl Microbiol 57:40–46. doi: 10.1111/lam.12071 CrossRefPubMedGoogle Scholar
  48. Mandelli F, Ramires BO, Couger MB et al (2015) Draft genome sequence of the thermophile Thermus filiformis ATCC 43280, producer of carotenoid—(di) glucoside-branched fatty acid (di) esters and source of hyperthermostable enzymes of biotechnological interest. Genome Announc 3(3):e00475–15. doi: 10.1128/genomeA.00475-15 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mandelstam I (1963) Protein turnover and its function in the economy of the cell. Ann N Y Acad Sci 102:621–636CrossRefGoogle Scholar
  50. Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:764–770. doi: 10.1093/bioinformatics/btr011 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mariutti LRB, Rodrigues E, Mercadante AZ (2013) Carotenoids from Byrsonima crassifolia: identification, quantification and in vitro scavenging capacity against peroxyl radicals. J Food Compos Anal 31:155–160. doi: 10.1016/j.jfca.2013.05.005 CrossRefGoogle Scholar
  52. Martens JH, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285. doi: 10.1007/s00253-001-0902-7 CrossRefPubMedGoogle Scholar
  53. Miyazaki K (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9:415–425. doi: 10.1007/s00792-005-0458-z CrossRefPubMedGoogle Scholar
  54. Miyoshi A, Rochat T, Gratadoux J-J et al (2003) Oxidative stress in Lactococcus lactis. Genet Mol Res 2:348–359PubMedGoogle Scholar
  55. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry abilities that proteins are present in a sample on the basis. Anal Chem 75:4646–4658. doi: 10.1021/ac0341261 CrossRefPubMedGoogle Scholar
  56. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169. doi: 10.1007/s00253-004-1840-y CrossRefPubMedGoogle Scholar
  57. Pintea A, Bunea A, Andrei S (2013) Impact of esterification on the antioxidant capacity of β-cryptoxanthin. Bull USAMV Anim Sci Biotechnol 70:79–85Google Scholar
  58. Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127CrossRefPubMedGoogle Scholar
  59. Pruneau L, Moumène A, Meyer DF et al (2014) Understanding Anaplasmataceae pathogenesis using “Omics” approaches. Front Cell Infect Microbiol 4:86. doi: 10.3389/fcimb.2014.00086 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ralser M, Wamelink MM, Kowald A et al (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10. doi: 10.1186/jbiol61 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ramaley RF, Hixson J (1970) Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus. J Bacteriol 103:526–528Google Scholar
  62. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi: 10.1093/bioinformatics/btp616 CrossRefPubMedGoogle Scholar
  63. Rodrigues E, Mariutti LRB, Chisté RC, Mercadante AZ (2012a) Development of a novel micro-assay for evaluation of peroxyl radical scavenger capacity: application to carotenoids and structure–activity relationship. Food Chem 135:2103–2111. doi: 10.1016/j.foodchem.2012.06.074 CrossRefPubMedGoogle Scholar
  64. Rodrigues E, Mariutti LRB, Mercadante AZ (2012b) Scavenging capacity of marine carotenoids against reactive oxygen and nitrogen species in a membrane-mimicking system. Mar Drugs 10:1784–1798. doi: 10.3390/md10081784 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Roessner U, Luedemann A, Brust D et al (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29. doi: 10.1105/tpc.13.1.11 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Shimizu K (2013) Regulation systems of bacteria such as Escherichia coli in response to nutrient limitation and environmental stresses. Metabolites 4:1–35. doi: 10.3390/metabo4010001 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sinnott ML (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171–1202. doi: 10.1021/cr00105a006 CrossRefGoogle Scholar
  68. Sun J, Zhou J, Wang Z et al (2015) Multi-omics based changes in response to cadmium toxicity in Bacillus licheniformis A. R Soc Chem 5:7330–7339Google Scholar
  69. Takano H, Kondo M, Usui N et al (2011) Involvement of CarA/LitR and CRP/FNR family transcriptional regulators in light-induced carotenoid production in Thermus thermophilus. J Bacteriol 193:2451–2459. doi: 10.1128/JB.01125-10 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Topanurak S, Sinchaikul S, Phutrakul S et al (2005) Proteomics viewed on stress response of thermophilic bacterium Bacillus stearothermophilus TLS33. Proteomics 5:3722–3730. doi: 10.1002/pmic.200401254 CrossRefPubMedGoogle Scholar
  71. Tsouko E, Khan A, White M et al (2014) Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis. doi: 10.1038/oncsis.2014.18 PubMedPubMedCentralGoogle Scholar
  72. Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83. doi: 10.1002/pmic.200200500 CrossRefPubMedGoogle Scholar
  73. Wickham H (2009) Elegant graphics for data analysis. Media 35:211. doi: 10.1007/978-0-387-98141-3 Google Scholar
  74. Willetts NS (1967) Intracellular protein breakdown in non-growing cells of Escherichia coli. Biochem J 103:453–461CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yokoyama A (1995) Thermozeaxanthins, new carotenoid-glycoside-esters from thermophilic eubacterium Thermus thermophilus. Tetrahedron Lett 36:4901–4904. doi: 10.1016/00404-0399(50)0881C- CrossRefGoogle Scholar
  76. Zhou A, Chen YI, Zane GM et al (2012) Functional characterization of Crp/Fnr-type global transcriptional regulators in Desulfovibrio vulgaris hildenborough. Appl Environ Microbiol 78:1168–1177. doi: 10.1128/AEM.05666-11 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • F. Mandelli
    • 1
    • 2
  • M. B. Couger
    • 3
  • D. A. A. Paixão
    • 1
  • C. B. Machado
    • 1
  • C. M. Carnielli
    • 4
  • J. A. Aricetti
    • 1
  • I. Polikarpov
    • 5
  • R. Prade
    • 3
  • C. Caldana
    • 1
    • 6
  • A. F. Paes Leme
    • 4
  • A. Z. Mercadante
    • 2
  • D. M. Riaño-Pachón
    • 1
    • 7
  • Fabio Marcio Squina
    • 8
  1. 1.Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE)Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)CampinasBrazil
  2. 2.Departamento de Ciência de Alimentos, Faculdade de Engenharia de AlimentosUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
  3. 3.Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterUSA
  4. 4.Laboratório Nacional de Biociências (LNBio)Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)CampinasBrazil
  5. 5.Instituto de Física de São CarlosUniversidade de São Paulo (USP)São CarlosBrazil
  6. 6.Max Planck Partner Group at Brazilian Bioethanol Science and Technology Laboratory/CNPEMCampinasBrazil
  7. 7.Guest Researcher at Laboratório de Biologia de Sistemas Regulatórios, Instituto de QuímicaUniversidade de São Paulo (USP)São PauloBrazil
  8. 8.Programa de Processos Tecnológicos e AmbientaisUniversidade de Sorocaba (UNISO)SorocabaBrazil

Personalised recommendations