Advertisement

Extremophiles

, Volume 21, Issue 1, pp 211–229 | Cite as

Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales

  • Isabel Natalia Sierra-GarciaEmail author
  • Bruna M. Dellagnezze
  • Viviane P. Santos
  • Michel R. Chaves B
  • Ramsés Capilla
  • Eugenio V. Santos Neto
  • Neil Gray
  • Valeria M. Oliveira
Original Paper

Abstract

Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.

Keywords

Microbial diversity Petroleum reservoirs Oil Degradation 

Notes

Acknowledgements

We are thankful to Prof. Anita Marsaioli for scientific contribution regarding the hydrocarbon composition of the oil samples.

Compliance with ethical standards

Funding

This work was supported by the São Paulo Research Foundation, FAPESP (Process No. 2011/14501-6).

Conflict of interest

All authors agree with the publication of the work and declare that there are no conflicts of interest.

Supplementary material

792_2016_897_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 26 kb)

References

  1. Acosta-González A, Rosselló-Móra R, Marqués S (2013) Diversity of benzylsuccinate synthase-like (bssA) genes in hydrocarbon-polluted marine sediments suggests substrate-dependent clustering. Appl Environ Microbiol 79:3667–3676. doi: 10.1128/AEM.03934-12 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aguiar HGM, Penteado H (2005) Análise do comportamento de parâmetros físicos em função da composição global e maturação de óleos lacustres da bacia do Recôncavo. Dissertation, Universidade Federal do Rio de Janeiro, COPPEGoogle Scholar
  3. Augustinovic Z, Birketveit O, Clements K, Freeman M, Gopi S, Ishoey T et al (2012) Microbes—oilfield enemies or allies? Oilf Rev 24:1–14Google Scholar
  4. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinform 15:293. doi: 10.1186/1471-2105-15-293 CrossRefGoogle Scholar
  5. Bonch-Osmolovskaya EA, Margarita L, Lebedinsky AV, Nikolai A, Nazina TN, Ivoilov VS et al (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151. doi: 10.1128/AEM.69.10.6143 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ et al (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348. doi: 10.1046/j.1462-2920.2002.00297.x CrossRefPubMedGoogle Scholar
  7. Cheng L, Dai L, Li X, Zhang H, Lu Y (2011) Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field. Appl Environ Microbiol 77:5212–5219. doi: 10.1128/AEM.00210-11 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cheng L, Shi S, Li Q, Chen J, Zhang H, Lu Y (2014) Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions. PLoS One 9:e113253CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  10. Dahle H, Birkeland NK (2006) Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol 56:1539–1545. doi: 10.1099/ijs.0.63894-0 CrossRefPubMedGoogle Scholar
  11. Dahle H, Garshol F, Madsen M, Birkeland NK (2008) Microbial community structure analysis of produced water from a high temperature North Sea oil-field. Antonie Van Leeuwenhoek 93:37–49. doi: 10.1007/s10482-007-9177-z CrossRefPubMedGoogle Scholar
  12. de Vasconcellos SP, Crespim E, da Cruz G, Senatore D, Simioni KCM, Neto EVDS et al (2009) Isolation, biodegradation ability and molecular detection of hydrocarbon degrading bacteria in petroleum samples from a Brazilian offshore basin. Org Geochem 40:574–588CrossRefGoogle Scholar
  13. DiPippo JL, Nesbø CL, Dahle H, Doolittle WF, Birkland NK, Noll KM (2009) Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int J Syst Evol Microbiol 59:2991–3000. doi: 10.1099/ijs.0.008045-0 CrossRefPubMedGoogle Scholar
  14. Ewing B, Hillier L, Wendl M, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185CrossRefPubMedGoogle Scholar
  15. Figueiredo AMF, Braga JAE, Zabalaga JC, Oliveira JJ, Aguiar GA, Silva OB, Mato LF, Daniel LMF, Magnavita LP, Bruhn CHL (1994) Recôncavo Basin, Brazil: a prolific intracontinental rift basin. In: Landon SM (ed) Interior rift basins, Memoir, 59. American Association of Petroleum Geologists, Tulsa, pp 157–203Google Scholar
  16. Gaglianone PC, Trindade LAF (1988) Caracterização geoquímica dos óleos da Bacia do Recôncavo. Geochim Bras 2:15–39Google Scholar
  17. Gao P, Tian H, Li G, Sun H, Ma T (2015) Microbial diversity and abundance in the Xinjiang Luliang long-term water-flooding petroleum reservoir. Microbiol Open 4:332–342. doi: 10.1002/mbo3.241 CrossRefGoogle Scholar
  18. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P et al (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576. doi: 10.1099/00207713-42-4-568 CrossRefPubMedGoogle Scholar
  19. Gieg LM, Davidova I, Duncan KE, Suflita JM (2010) Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12:3074–3086. doi: 10.1111/j.1462-2920.2010.02282.x CrossRefPubMedGoogle Scholar
  20. Gittel A, Kofoed MVW, Sørensen KB, Ingvorsen K, Schramm A (2012) Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Syst Appl Microbiol 35:165–174CrossRefPubMedGoogle Scholar
  21. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202CrossRefPubMedGoogle Scholar
  22. Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443. doi: 10.1016/j.resmic.2005.03.009 CrossRefPubMedGoogle Scholar
  23. Gray ND, Sherry A, Hubert C, Dolfing J, Head IM (2010) Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation and energy recovery. Adv Appl Microbiol 72:137–161. doi: 10.1016/S0065-2164(10)72005-0 CrossRefPubMedGoogle Scholar
  24. Gray ND, Sherry A, Grant RJ, Rowana K, Hubert CRJ, Callbeck CM et al (2011) The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ Microbiol 13:2957–2975. doi: 10.1111/j.1462-2920.2011.02570.x CrossRefPubMedPubMedCentralGoogle Scholar
  25. Greene AC, Patel BKC, Yacob S (2009) Geoalkalibacter subterraneus sp. nov., an anaerobic Fe(III)- and Mn(IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. Int J Syst Evol Microbiol 59:781–785. doi: 10.1099/ijs.0.001537-0 CrossRefPubMedGoogle Scholar
  26. Gu J, Cai H, Yu S-L, Qu R, Yin B, Guo Y-F et al (2007) Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 57:707–711Google Scholar
  27. Guo B, Gu J, Ye YG, Tan YQ, Kida K, Wu XL (2007) Marinobacter segnicrescens sp nov., a moderate halophile isolated from benthic sediment of the South China Sea. Int J Syst Evol Microbiol 57:1970–1974. doi: 10.1099/ijs.0.65030-0 CrossRefPubMedGoogle Scholar
  28. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352. doi: 10.1038/nature02134 CrossRefPubMedGoogle Scholar
  29. Hubert CRJ, Oldenburg TBP, Fustic M, Gray ND, Larter SR, Penn K et al (2012) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oil sands reservoir containing severely biodegraded oil. Environ Microbiol 14:387–404. doi: 10.1111/j.1462-2920.2011.02521.x CrossRefPubMedPubMedCentralGoogle Scholar
  30. Iino T, Nakagawa T, Mori K, Harayama S, Suzuki KI (2008) Calditerrivibrio nitroreducens gen. nov., sp. nov., a thermophilic, nitrate-reducing bacterium isolated from a terrestrial hot spring in Japan. Int J Syst Evol Microbiol 58:1675–1679. doi: 10.1099/ijs.0.65714-0 CrossRefPubMedGoogle Scholar
  31. Jeon CO, Madsen EL (2012) In situ microbial metabolism of aromatic-hydrocarbon environmental pollutants. Curr Opin Biotechnol 24:474–481CrossRefPubMedGoogle Scholar
  32. Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM et al (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180. doi: 10.1038/nature06484 CrossRefPubMedGoogle Scholar
  33. Kaster KM, Bonaunet K, Berland H, Kjeilen-Eilertsen G, Brakstad OG (2009) Characterisation of culture-independent and dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie Van Leeuwenhoek 96:423–439. doi: 10.1007/s10482-009-9356-1 CrossRefPubMedGoogle Scholar
  34. Kendall MM, Boone DR (2006) The order methanosarcinales. In: Dworkin et al (eds) Prokaryotes, vol 3. Archaea. Bacteria: firmicutes, actinomycetes. Springer, New York, pp 244–256Google Scholar
  35. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. doi: 10.1007/BF01731581 CrossRefPubMedGoogle Scholar
  36. Kjeldsen KU, Loy A, Jakobsen TF, Thomsen TR, Wagner M, Ingvorsen K (2007) Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60:287–298. doi: 10.1111/j.1574-6941.2007.00288.x CrossRefPubMedGoogle Scholar
  37. Kobayashi H, Endo K, Sakata S, Mayumi D, Kawaguchi H, Ikarashi M et al (2012a) Phylogenetic diversity of microbial communities associated with the crude-oil, large-insoluble-particle and formation-water components of the reservoir fluid from a non-flooded high-temperature petroleum reservoir. J Biosci Bioeng 113:204–210. doi: 10.1016/j.jbiosc.2011.09.015 CrossRefPubMedGoogle Scholar
  38. Kobayashi H, Kawaguchi H, Endo K, Mayumi D, Sakata S, Ikarashi M et al (2012b) Analysis of methane production by microorganisms indigenous to a depleted oil reservoir for application in microbial enhanced oil recovery. J Biosci Bioeng 113:84–87. doi: 10.1016/j.jbiosc.2011.09.003 CrossRefPubMedGoogle Scholar
  39. Köpke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830. doi: 10.1128/AEM.71.12.7819-7830.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Korenblum E, Souza DB, Penna M, Seldin L (2012) Molecular analysis of the bacterial communities in crude oil samples from two brazilian offshore petroleum platforms. Int J Microbiol. doi: 10.1155/2012/156537 Google Scholar
  41. L’Haridon S, Miroshnichenko ML, Hippe H, Fardeau ML, Bonch-Osmolovskaya E, Stackebrandt E et al (2001) Thermosiphogeolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334. doi: 10.1099/00207713-51-4-1327 CrossRefGoogle Scholar
  42. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow B (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  43. Lewin A, Johansen J, Wentzel A, Kotlar HK, Drabløs F, Valla S (2014) The microbial communities in two apparently physically separated deep subsurface oil reservoirs show extensive DNA sequence similarities. Environ Microbiol 16:545–558. doi: 10.1111/1462-2920.12181 CrossRefPubMedGoogle Scholar
  44. Li H, Yang S-Z, Mu B-Z, Rong Z-F, Zhang J (2007) Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS Microbiol Ecol 60:74–84. doi: 10.1111/j.1574-6941.2006.00266.x CrossRefPubMedGoogle Scholar
  45. Li D, Midgley DJ, Ross JP, Oytam Y, Abell GCJ, Volk H et al (2012) Microbial biodiversity in a Malaysian oil field and a systematic comparison with oil reservoirs worldwide. Arch Microbiol 194:513–523. doi: 10.1007/s00203-012-0788-z CrossRefPubMedGoogle Scholar
  46. Lopes-Oliveira PF, Vasconcellos SP, Angolini CFF, Cruz GF, Marsaioli AJ, Neto EVS et al (2012) Taxonomic diversity and biodegradation potential of bacteria isolated from oil reservoirs of an offshore southern Brazilian basin. J Pet Environ Biotechnol 3:1–14. doi: 10.4172/2157-7463.1000132 Google Scholar
  47. Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116. doi: 10.1023/A:1002434330514 CrossRefPubMedGoogle Scholar
  48. Mayumi D, Mochimaru H, Yoshioka H, Sakata S, Maeda H, Miyagawa Y et al (2011) Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan). Environ Microbiol 13:1995–2006. doi: 10.1111/j.1462-2920.2010.02338.x CrossRefPubMedGoogle Scholar
  49. Mello MR, Maxwell JR (1990) Organic geochemical and biological marker characterization of source rocks and oils derived from lacustrine environments in the Brazilian continental margin. In: Katz BJ (ed) Lacustrine basin exploration: case studies and modern analogs. American Association of Petroleum Geologists Memoir 50, Tulsa, pp 77–98Google Scholar
  50. Mello M, Telnaes N, Gaglianone P, Chicarelli M, Brassell S, Maxwell J (1988) Organic geochemical characterisation of depositional palaeoenvironments of source rocks and oils in Brazilian marginal basins. Org Geochem 13:31–45. doi: 10.1016/0146-6380(88)90023-X CrossRefGoogle Scholar
  51. Mello MR, Koutsoukos EAM, Mohriak WU, Bacoccoli G (1994) Selected petroleum systems in Brazil. In: Magoon LB, Dow WG (eds) The petroleum system—from source to trap. American Association of Petroleum Geologists Memoir 60, Tulsa, pp 499–512Google Scholar
  52. Miranda-Tello E, Fardeau ML, Thomas P, Ramirez F, Casalot L, Cayol JL et al (2004) Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54:169–174CrossRefPubMedGoogle Scholar
  53. Miranda-Tello E, Fardeau ML, Joulian C, Magot M, Thomas P, Tholozan JL et al (2007) Petrotoga halophila sp. nov., a thermophilic, moderately halophilic, fermentative bacterium isolated from an offshore oil well in Congo. Int J Syst Evol Microbiol 57:40–44CrossRefPubMedGoogle Scholar
  54. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE et al (2001) Taxonomic study of aerobic thermophilic bacilli: Descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus th.. Int J Syst Evol Microbiol 51:433–446CrossRefPubMedGoogle Scholar
  55. Nazina TN, Shestakova NM, Pavlova NK, Tatarkin YV, Ivoilov VS, Khisametdinov MR et al (2013) Functional and phylogenetic microbial diversity in formation waters of a low-temperature carbonate petroleum reservoir. Int Biodeterior Biodegrad 81:71–81CrossRefGoogle Scholar
  56. Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225CrossRefPubMedGoogle Scholar
  57. Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711CrossRefPubMedPubMedCentralGoogle Scholar
  58. Peters KE, Moldowan JM (1993) The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments. Prentice-Hall, Englewood CliffsGoogle Scholar
  59. Pham VD, Hnatow LL, Zhang S, Fallon RD, Jackson SC, Tomb JF et al (2009) Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environ Microbiol 11:176–187CrossRefPubMedGoogle Scholar
  60. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730PubMedPubMedCentralGoogle Scholar
  61. Pruesse E, Peplies J, Glöckner FO (2012) SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829CrossRefPubMedPubMedCentralGoogle Scholar
  62. Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J et al (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3:700–714CrossRefPubMedGoogle Scholar
  63. Roling W (2003) The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res Microbiol 154:321–328CrossRefPubMedGoogle Scholar
  64. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  65. Schulze-Makuch D, Haque S, de Sousa Antonio MR, Ali D, Hosein R, Song YC et al (2011) Microbial life in a liquid asphalt desert. Astrobiology 11:241–258CrossRefPubMedGoogle Scholar
  66. Sette LD, Simioni KCM, Vasconcellos SP, Dussan LJ, Neto EVS, Oliveira VM (2007) Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin. Antonie Van Leeuwenhoek 91:253–266CrossRefPubMedGoogle Scholar
  67. Shestakova NM, Korshunova AV, Mikhailova EM, Sokolova DS, Tourova TP, Belyaev SS et al (2011) Characterization of the aerobic hydrocarbon-oxidizing enrichments from a high-temperature petroleum reservoir by comparative analysis of DNA- and RNA-derived clone libraries. Microbiology 80:60–69CrossRefGoogle Scholar
  68. Silva TR, Verde LCL, Santos Neto EV, Oliveira VM (2013) Diversity analyses of microbial communities in petroleum samples from Brazilian oil fields. Int Biodeterior Biodegrad 81:57–70CrossRefGoogle Scholar
  69. Takii S, Hanada S, Tamaki H, Ueno Y, Sekiguchi Y, Ibe A et al (2007) Dethiosulfatibacter aminovorans gen. nov., sp. nov., a novel thiosulfate-reducing bacterium isolated from coastal marine sediment via sulfate-reducing enrichment with casamino acids. Int J Syst Evol Microbiol 57:2320–2326CrossRefPubMedGoogle Scholar
  70. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  71. Tang YQ, Li Y, Zhao JY, Chi CQ, Huang LX, Dong HP et al (2012) Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperatures in the Huabei oilfield, China. PLoS One 7:e33535CrossRefPubMedPubMedCentralGoogle Scholar
  72. Trindade LAF, Dias JL, Mello MR (1995) Sedimentological and geochemical characterization of the Lagoa Feia Formation, rift phase of the Campos Basin, Brazil. In: Katz BJ (ed) Petroleum source rocks. Casebooks in Earth sciences. Springer, Berlin, pp 149–165CrossRefGoogle Scholar
  73. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21CrossRefPubMedGoogle Scholar
  74. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wentzel A, Lewin A, Cervantes FJ, Valla S, Kotlar HK, Subsurface D et al (2013) Deep subsurface oil reservoirs as polyextreme habitats for microbial life. A current review. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles. Cellular origin, life in extreme habitats and astrobiology, vol 27. Springer, Dordrecht, pp 439–466Google Scholar
  76. Yamane K, Maki H, Nakayama T, Nakajima T, Nomura N, Uchiyama H et al (2008) Diversity and similarity of microbial communities in petroleum crude oils produced in Asia. Biosci Biotechnol Biochem 72:2831–2839CrossRefPubMedGoogle Scholar
  77. Yin Q, Fu B, Li B, Shi X, Inagaki F, Zhang XH (2013) Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre. PLoS One 8:e55148CrossRefPubMedPubMedCentralGoogle Scholar
  78. Yoshida N, Yagi K, Sato D, Watanabe N, Kuroishi T, Nishimoto K et al (2005) Bacterial communities in petroleum oil in stockpiles. J Biosci Bioeng 99:143–149CrossRefPubMedGoogle Scholar
  79. Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits, problems, and opportunities. In: Laskin AI, Sariaslani L, Gadd GM (eds) Advances in applied microbiology, vol 66. Elsevier, Burlington, pp 141–251Google Scholar
  80. Zavarzina DG, Kolganova TV, Bulygina ES, Kostrikina NA, Turova TP, Zavarzin GA (2006) Geoalkalibacter ferrihydriticus gen. nov., sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake. Mikrobiologiia 75:775–785PubMedGoogle Scholar
  81. Zhang H, Kallimanis A, Koukkou AI, Drainas C (2004) Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol 65:124–131CrossRefPubMedGoogle Scholar
  82. Zhang F, Liu X, Dong X (2012a) Thermosyntropha tengcongensis sp. nov., a thermophilic bacterium that degrades long-chain fatty acids syntrophically. Int J Syst Evol Microbiol 62:759–763CrossRefPubMedGoogle Scholar
  83. Zhang F, She Y-H, Chai L-J, Banat IM, Zhang X-T, Shu F-C et al (2012b) Microbial diversity in long-term water-flooded oil reservoirs with different in situ temperatures in China. Sci Rep. doi: 10.1038/srep00760 Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Isabel Natalia Sierra-Garcia
    • 1
    • 4
    Email author
  • Bruna M. Dellagnezze
    • 1
  • Viviane P. Santos
    • 1
  • Michel R. Chaves B
    • 2
  • Ramsés Capilla
    • 3
  • Eugenio V. Santos Neto
    • 3
  • Neil Gray
    • 4
  • Valeria M. Oliveira
    • 1
  1. 1.Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA)University of Campinas, UNICAMPCampinasBrazil
  2. 2.Institute of ChemistryUniversity of CampinasCampinasBrazil
  3. 3.PETROBRAS/R&D CenterRio de JaneiroBrazil
  4. 4.School of Civil Engineering and GeosciencesNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations