Advertisement

Extremophiles

, Volume 21, Issue 1, pp 3–14 | Cite as

Nonconventional cation-coupled flagellar motors derived from the alkaliphilic Bacillus and Paenibacillus species

  • Masahiro ItoEmail author
  • Yuka Takahashi
Special Feature: Review 11th International Congress on Extremophiles
Part of the following topical collections:
  1. 11th International Congress on Extremophiles

Abstract

Prior to 2008, all previously studied conventional bacterial flagellar motors appeared to utilize either H+ or Na+ as coupling ions. Membrane-embedded stator complexes support conversion of energy using transmembrane electrochemical ion gradients. The main H+-coupled stators, known as MotAB, differ from Na+-coupled stators, PomAB of marine bacteria, and MotPS of alkaliphilic Bacillus. However, in 2008, a MotAB-type flagellar motor of alkaliphilic Bacillus clausii KSM-K16 was revealed as an exception with the first dual-function motor. This bacterium was identified as the first bacterium with a single stator–rotor that can utilize both H+ and Na+ for ion-coupling at different pH ranges. Subsequently, another exception, a MotPS-type flagellar motor of alkaliphilic Bacillus alcalophilus AV1934, was reported to utilize Na+ plus K+ and Rb+ as coupling ions for flagellar rotation. In addition, the alkaline-tolerant bacterium Paenibacillus sp. TCA20, which can utilize divalent cations such as Ca2+, Mg2+, and Sr2+, was recently isolated from a hot spring in Japan, which contains a high Ca2+ concentration. These findings show that bacterial flagellar motors isolated from unique environments utilize unexpected coupling ions. This suggests that bacteria that grow in different extreme environments adapt to local conditions and evolve their motility machinery.

Keywords

Alkaliphiles MotPS Stator Flagellar motor Divalent cation 

Abbreviations

CCCP

Carbonyl cyanide m-chlorophenyl hydrazone

EIPA

5-(N-ethyl-N-isopropyl)-amiloride

pmf

Proton motive force

smf

Sodium motive force

Notes

Acknowledgments

We thank Dr. Arthur A. Guffanti for critical discussions and reading of the manuscript. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas No. 24117005 of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MI).

Compliance with ethical standards

Funding

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas No. 24117005 of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MI).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Alam A, Jiang Y (2009) High-resolution structure of the open NaK channel. Nat Struct Mol Biol 16:30–34. doi: 10.1038/nsmb.1531 CrossRefPubMedGoogle Scholar
  2. Albers SV, Jarrell KF (2015) The archaellum: how Archaea swim. Front Microbiol 6:23. doi: 10.3389/fmicb.2015.00023 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Albers SV, Pohlschroder M (2009) Diversity of archaeal type IV pilin-like structures. Extremophiles 13:403–410. doi: 10.1007/s00792-009-0241-7 CrossRefPubMedGoogle Scholar
  4. Aono R, Ogino H, Horikoshi K (1992) pH-dependent flagella formation by facultative alkaliphilic Bacillus sp. C-125. Biosci Biotechnol Biochem 56:48–53CrossRefPubMedGoogle Scholar
  5. Atsumi T, McCarter L, Imae Y (1992) Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355:182–184CrossRefPubMedGoogle Scholar
  6. Attie O et al (2014) Draft genome sequence of Bacillus alcalophilus AV1934, a Classic alkaliphile isolated from human feces in 1934. Genome Announc. doi: 10.1128/genomeA.01175-14 PubMedPubMedCentralGoogle Scholar
  7. Braun TF, Al-Mawsawi LQ, Kojima S, Blair DF (2004) Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. Biochemistry 43:35–45CrossRefPubMedGoogle Scholar
  8. Chun SY, Parkinson JS (1988) Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239:276–278CrossRefPubMedGoogle Scholar
  9. DeCaen P, Takahashi Y, Krulwich T, Ito M, Clapham D (2014) Ionic selectivity and thermal adaptations within the voltage-gated sodium channel family of alkaliphilic Bacillus. Elife 3:e04387. doi: 10.7554/eLife.04387 CrossRefPubMedCentralGoogle Scholar
  10. Dow JA (1984) Extremely high pH in biological systems: a model for carbonate transport. Am J Physiol Regul Integr Comp Physiol 246:R633–R635Google Scholar
  11. Doyle DA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77CrossRefPubMedGoogle Scholar
  12. Fujinami S et al (2007a) The voltage-gated Na+ channel NaVBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. Microbiology 153:4027–4038. doi: 10.1099/mic.0.2007/012070-0 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fujinami S, Terahara N, Lee S, Ito M (2007b) Na+ and flagella-dependent swimming of alkaliphilic Bacillus pseudofirmus OF4: a basis for poor motility at low pH and enhancement in viscous media in an “up-motile” variant. Arch Microbiol 187:239–247. doi: 10.1007/s00203-006-0192-7 CrossRefPubMedGoogle Scholar
  14. Fujinami S, Terahara N, Krulwich TA, Ito M (2009) Motility and chemotaxis in alkaliphilic Bacillus species. Future Microbiol 4:1137–1149. doi: 10.2217/fmb.09.76 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fujinami S et al (2014) Draft genome sequence of calcium-dependent Paenibacillus sp. strain TCA20, isolated from a hot spring containing a high concentration of calcium ions. Genome Announc 2:e00814–e00866. doi: 10.1128/genomeA.00866-14 Google Scholar
  16. Goto T et al (2016) Contribution of intracellular negative ion capacity to Donnan effect across the membrane in alkaliphilic Bacillus spp. J Bioenerg Biomembr 48:87–96. doi: 10.1007/s10863-015-9641-9 CrossRefPubMedGoogle Scholar
  17. Guffanti AA, Krulwich TA (1994) Oxidative phosphorylation by ADP + Pi-loaded membrane vesicles of alkaliphilic Bacillus firmus OF4. J Biol Chem 269:21576–21582PubMedGoogle Scholar
  18. Guffanti AA, Blanco R, Krulwich TA (1979) A requirement for ATP for b-galactoside transport by Bacillus alcalophilus. J Biol Chem 254:1033–1037PubMedGoogle Scholar
  19. Guffanti AA, Cohn DE, Kaback HR, Krulwich TA (1981) Relationship between the Na+/H+ antiporter and Na+/substrate symport in Bacillus alcalophilus. Proc Natl Acad Sci USA 78:1481–1484CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guffanti AA et al (1986) Isolation and characterization of new facultatively alkalophilic strains of Bacillus species. J Bacteriol 167:766–773CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hase CC, Barquera B (2001) Role of sodium bioenergetics in Vibrio cholerae. Biochim Biophys Acta 1505:169–178CrossRefPubMedGoogle Scholar
  22. Hess P, Lansman JB, Tsien RW (1986) Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol 88:293–319CrossRefPubMedGoogle Scholar
  23. Hirota N, Imae Y (1983) Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. J Biol Chem 258:10577–10581PubMedGoogle Scholar
  24. Hirota N, Kitada M, Imae Y (1981) Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett 132:278–280CrossRefGoogle Scholar
  25. Horikoshi K, Akiba T (1982) Alkalophilic microorganisms: a new microbial world. Springer-Verlag, Heidelberg, TokyoGoogle Scholar
  26. Horikoshi K (1991) Microorganisms in alkaline environments. VCH Publishers Inc., New YorkGoogle Scholar
  27. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedPubMedCentralGoogle Scholar
  28. Horikoshi K (2016) Extremophiles: where it all began. Springer, TokyoCrossRefGoogle Scholar
  29. Imazawa R, Takahashi Y, Aoki W, Sano M, Ito M (2016) A novel type bacterial flagellar motor that can use divalent cations as a coupling ion. Sci Rep 6:19773. doi: 10.1038/srep19773 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ito M (2002) Aerobic alkaliphiles. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 133–140Google Scholar
  31. Ito M et al (2004) MotPS is the stator-force generator for motility of alkaliphilic Bacillus and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 53:1035–1049CrossRefPubMedGoogle Scholar
  32. Ito M, Terahara N, Fujinami S, Krulwich TA (2005) Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J Mol Biol 352:396–408CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ito M, Fujinami S, Terahara N (2011) Bioenergetics: Cell motility and chemotaxis of extreme alkaliphiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 141–162CrossRefGoogle Scholar
  34. Kageyama Y et al (2007) Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus clausii spp. Extremophiles 11:597–603CrossRefPubMedGoogle Scholar
  35. Kobayashi T et al (1995) Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–481CrossRefPubMedGoogle Scholar
  36. Kojima S (2015) Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor. Curr Opin Microbiol 28:66–71. doi: 10.1016/j.mib.2015.07.015 CrossRefPubMedGoogle Scholar
  37. Kojima S, Blair DF (2001) Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–13050CrossRefPubMedGoogle Scholar
  38. Kojima S, Blair DF (2004) The bacterial flagellar motor: structure and function of a complex molecular machine. Int Rev Cytol 233:93–134CrossRefPubMedGoogle Scholar
  39. Krulwich TA (1995) Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410CrossRefPubMedGoogle Scholar
  40. Krulwich TA, Hicks DB, Swartz TH, Ito M (2006) Bioenergetic adaptations that support alkaliphily. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 295–329Google Scholar
  41. Krulwich TA, Hicks DB, Swartz TH, Ito M (2007) Bioenergetic adaptations that support alkaliphily. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 311–329CrossRefGoogle Scholar
  42. Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343. doi: 10.1038/nrmicro2549 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358. doi: 10.1038/nature05135 CrossRefPubMedGoogle Scholar
  44. Lloyd SA, Tang H, Wang X, Billings S, Blair DF (1996) Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. J Bacteriol 178:223–231CrossRefPubMedPubMedCentralGoogle Scholar
  45. Makarova KS, Koonin EV, Albers SV (2016) Diversity and evolution of type IV pili systems in archaea. Front Microbiol 7:667. doi: 10.3389/fmicb.2016.00667 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mandel KG, Guffanti AA, Krulwich TA (1980) Monovalent cation/proton antiporters in membrane vesicles from Bacillus alcalophilus. J Biol Chem 255:7391–7396PubMedGoogle Scholar
  47. Marykwas DL, Schmidt SA, Berg HC (1996) Interacting components of the flagellar motor of Escherichia coli revealed by the two-hybrid system in yeast. J Mol Biol 256:564–576. doi: 10.1006/jmbi.1996.0109 CrossRefPubMedGoogle Scholar
  48. Matsuura S, Shioi J, Imae Y (1977) Motility in Bacillus subtilis driven by an artificial proton motive force. FEBS Lett 82:187–190CrossRefGoogle Scholar
  49. McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7:18–29. doi: 10.1159/000077866 CrossRefPubMedGoogle Scholar
  50. McCarter LL (2005) Multiple modes of motility: a second flagellar system in Escherichia coli. J Bacteriol 187:1207–1209. doi: 10.1128/JB.187.4.1207-1209.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Metlina AL (2004) Bacterial and archaeal flagella as prokaryotic motility organelles. Biochemistry (Mosc) 69:1203–1212CrossRefGoogle Scholar
  52. Minamino T (2014) Protein export through the bacterial flagellar type III export pathway. Biochim Biophys Acta 1843:1642–1648. doi: 10.1016/j.bbamcr.2013.09.005 CrossRefPubMedGoogle Scholar
  53. Minamino T, Imada K (2015) The bacterial flagellar motor and its structural diversity. Trends Microbiol 23:267–274. doi: 10.1016/j.tim.2014.12.011 CrossRefPubMedGoogle Scholar
  54. Minamino T, Imae Y, Oosawa F, Kobayashi Y, Oosawa K (2003) Effect of intracellular pH on rotational speed of bacterial flagellar motors. J Bacteriol 185:1190–1194CrossRefPubMedPubMedCentralGoogle Scholar
  55. Morimoto YV, Nakamura S, Kami-ike N, Namba K, Minamino T (2010) Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Mol Microbiol 78:1117–1129. doi: 10.1111/j.1365-2958.2010.07391.x CrossRefPubMedGoogle Scholar
  56. Morimoto YV, Nakamura S, Hiraoka KD, Namba K, Minamino T (2013) Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation. J Bacteriol 195:474–481. doi: 10.1128/JB.01971-12 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ng SY, Chaban B, Jarrell KF (2006) Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications. J Mol Microbiol Biotechnol 11:167–191. doi: 10.1159/000094053 CrossRefPubMedGoogle Scholar
  58. Ohkuma M et al (2003) An alkaliphilic and xylanolytic Paenibacillus species isolated from the gut of a soil-feeding termite. Microbes Environ 18:145–151CrossRefGoogle Scholar
  59. Paulick A et al (2015) Dual stator dynamics in the Shewanella oneidensis MR-1 flagellar motor. Mol Microbiol 96:993–1001. doi: 10.1111/mmi.12984 CrossRefPubMedGoogle Scholar
  60. Preiss L et al (2013) The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4. Proc Natl Acad Sci USA 110:7874–7879. doi: 10.1073/pnas.1303333110 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA (2015) Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front Bioeng Biotechnol 3:75. doi: 10.3389/fbioe.2015.00075 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sharp LL, Zhou J, Blair DF (1995) Tryptophan-scanning mutagenesis of MotB, an integral membrane protein essential for flagellar rotation in Escherichia coli. Biochemistry 34:9166–9171CrossRefPubMedGoogle Scholar
  63. Takami H, Takaki Y, Uchiyama I (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30:3927–3935CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tang H, Braun TF, Blair DF (1996) Motility protein complexes in the bacterial flagellar motor. J Mol Biol 261:209–221. doi: 10.1006/jmbi.1996.0453 CrossRefPubMedGoogle Scholar
  65. Terahara N, Fujisawa M, Powers B, Henkin TM, Krulwich TA, Ito M (2006) An intergenic stem-loop mutation in the Bacillus subtilis ccpA-motPS operon increases motPS transcription and the MotPS contribution to motility. J Bacteriol 188:2701–2705. doi: 10.1128/JB.188.7.2701-2705.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Terahara N, Krulwich TA, Ito M (2008) Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Proc Natl Acad Sci USA 105:14359–14364. doi: 10.1073/pnas.0802106105 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Terahara N, Sano M, Ito M (2012) A Bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+. PLoS One 7:e46248. doi: 10.1371/journal.pone.0046248 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Vedder A (1934) Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems. Antonie Van Leeuwenhoek 1:141–147CrossRefGoogle Scholar
  69. Yamaguchi S, Aizawa S, Kihara M, Isomura M, Jones CJ, Macnab RM (1986a) Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol 168:1172–1179CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yamaguchi S, Fujita H, Ishihara A, Aizawa S, Macnab RM (1986b) Subdivision of flagellar genes of Salmonella typhimurium into regions responsible for assembly, rotation, and switching. J Bacteriol 166:187–193CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yoshida S, Sugiyama S, Hojo Y, Tokuda H, Imae Y (1990) Intracellular Na+ kinetically interferes with the rotation of the Na+-driven flagellar motors of Vibrio alginolyticus. J Biol Chem 265:20346–20350PubMedGoogle Scholar
  72. Zhou J, Lloyd SA, Blair DF (1998a) Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci USA 95:6436–6441CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhou J et al (1998b) Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J Bacteriol 180:2729–2735PubMedPubMedCentralGoogle Scholar
  74. Zhu S, Kojima S, Homma M (2013) Structure, gene regulation and environmental response of flagella in Vibrio. Front Microbiol 4:410. doi: 10.3389/fmicb.2013.00410 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Faculty of Life SciencesToyo UniversityOura-gunJapan
  2. 2.Bio-nano Electronics Research CenterToyo UniversitySaitamaJapan

Personalised recommendations