Advertisement

Extremophiles

, Volume 21, Issue 1, pp 85–94 | Cite as

Characterization of two novel heat-active α-galactosidases from thermophilic bacteria

  • Carola Schröder
  • Viktoria-Astrid Janzer
  • Georg Schirrmacher
  • Jörg Claren
  • Garabed Antranikian
Special Feature: Original Paper 11th International Congress on Extremophiles
Part of the following topical collections:
  1. 11th International Congress on Extremophiles

Abstract

Two genes (agal1 and agal2) encoding α-galactosidases were identified by sequence-based screening approaches. The gene agal1 was identified from a data set of a sequenced hot spring metagenome, and the deduced amino-acid sequence exhibited 99% identity to an α-galactosidase from the thermophilic bacterium Dictyoglomus thermophilum. The gene agal2 was identified from the whole genome sequence of the thermophile Meiothermus ruber. The amino-acid sequences exhibited structural motifs typical for glycoside hydrolase (GH) family 36 members and were also differentiated into different subgroups of this family. Recombinant production of the heat-active GH36b enzyme Agal1 (87 kDa) and GH36bt enzyme Agal2 (57 kDa) was carried out in E. coli. Agal1 exhibited a specific activity of 1502.3 U/mg at 80 °C, pH 6.5, and Agal2 225.4 U/mg at 60–70 °C, pH 6.5. Half-lives of 14 h (Agal1) and 39 h (Agal2) were obtained at 50 °C, and Agal1 showed half-lives of 4 and 2 h at 70 and 80 °C, respectively. In addition to the natural substrates melibiose, raffinose, and stachyose, 4NP α-d-galactopyranoside was hydrolyzed. Galactose was also liberated from locust bean gum. Both heat-active enzymes are attractive candidates for application in food and feed industry for high-temperature processes for the degradation of raffinose family oligosaccharides.

Keywords

Thermostable α-galactosidase Raffinose family oligosaccharides Dictyoglomus thermophilum 

Notes

Acknowledgements

Thanks are due to Henning Piascheck and Henning Lübberding for experimental assistance.

Supplementary material

792_2016_885_MOESM1_ESM.pdf (84 kb)
Supplementary material 1 (PDF 84 kb)

References

  1. Anisha GS, John RP, Prema P (2009) Biochemical and hydrolytic properties of multiple thermostable α-galactosidases from Streptomyces griseoloalbus: obvious existence of a novel galactose-tolerant enzyme. Process Biochem 44(3):327–333CrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of micro-gram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  3. Britton HTS and Robinson RA (1931) Universal buffer solutions and the dissociation constant of veronal. J Chem Soc 1456–73Google Scholar
  4. Brouns SJ, Smits N, Wu H, Snijders AP, Wright PC, de Vos WM, van der Oost J (2006) Identification of a novel a-galactosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 88:2392–2399CrossRefGoogle Scholar
  5. Coil DA, Badger JH, Forberger HC, Riggs F, Madupu R, Fedorova N, Ward N, Robb FT, Eisen JA (2014) Complete genome sequence of the extreme thermophile Dictyoglomus thermophilum H-6-12. Genome Announc 20 2(1)Google Scholar
  6. Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123CrossRefPubMedGoogle Scholar
  7. Fredslund F, Hachem MA, Larsen RJ, Sørensen PG, Coutinho PM, Lo Leggio L, Svensson B (2011) Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J Mol Biol 412(3):466–480CrossRefPubMedGoogle Scholar
  8. Fridjonsson O, Watzlawick H, Gehweiler A, Rohrhirsch T, Mattes R (1999) Cloning of the gene encoding a novel thermostable alpha-galactosidase from Thermus brockianus ITI360. Appl Environ Microbiol 65(9):3955–3963PubMedPubMedCentralGoogle Scholar
  9. Ganter C, Böck A, Buckel P, Mattes R (1988) Production of thermostable, recombinant α-galactosidase suitable for raffinose elimination from sugar beet syrup. J Biotechnol 8:301–310CrossRefGoogle Scholar
  10. Gote MM, Khan MI, Gokhale CV, Bastawde KB, Khire JB (2006) Purification, characterization and substrate specificity of thermostable α-galactosidase from Bacillus stearothermophilus (NCIM-5146). Process Biochem 41(6):1311–1317CrossRefGoogle Scholar
  11. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7(5):637–644CrossRefPubMedGoogle Scholar
  12. Ishiguro M, Kaneko S, Kuno A, Koyama Y, Yoshida S, Park GG, Sakakibara Y, Kusakabe I, Kobayashi H (2001) Purification and characterization of the recombinant Thermus sp. strain T2 alpha-galactosidase expressed in Escherichia coli. Appl Environ Microbiol 67(4):1601–1606CrossRefPubMedPubMedCentralGoogle Scholar
  13. Katrolia P, Jia H, Yan Q, Song S, Jiang Z, Xu H (2012) Characterization of a protease-resistant α-galactosidase from the thermophilic fungus Rhizomucor miehei and its application in removal of raffinose family oligosaccharides. Bioresour Technol 110:578–586CrossRefPubMedGoogle Scholar
  14. Katrolia P, Rajashekhara E, Yan Q, Jiang Z (2014) Biotechnological potential of microbial α-galactosidases. Crit Rev Biotechnol 34(4):307–317CrossRefPubMedGoogle Scholar
  15. Keller F, Pharr DM (1996) Metabolism of carbohydrates in sink and sources: galactosyl-sucrose oligosaccharides. Photoassimilate distribution in plants and crops: source–sink relationships. Marcel Dekker, New York, pp 157–183Google Scholar
  16. Kondoh K, Morisaki K, Kim W-D, Kotwal SM, Kaneko S, Kobayashi H (2005) Expression of Streptomyces coelicolor α-galactosidase gene in Escherichia coli and characterization. Food Sci Technol Res 11(2):207–213CrossRefGoogle Scholar
  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  18. LeBlanc JG, Garro MS, Silvestroni A, Connes C, Piard JC, Sesma F, Savoy de Giori G (2004) Reduction of alpha-galactooligosaccharides in soyamilk by Lactobacillus fermentum CRL 722: in vitro and in vivo evaluation of fermented soyamilk. J Appl Microbiol 97(4):876–881CrossRefPubMedGoogle Scholar
  19. Liebl W, Wagner B, Schellhase J (1998) Properties of an α-galactosidase, and structure of its gene galA, within an α- and β-galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritima. Syst Appl Microbiol 21:1–11CrossRefPubMedGoogle Scholar
  20. Liu X, Champagne CP, Lee BH, Boye JI (2014) Casgrain M (2014) Thermostability of probiotics and their α-galactosidases and the potential for bean products. Biotechnol Res Int 2014:472723. doi: 10.1155/2014/472723 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Loginova LG, Egorova LA, Golovacheva RS, Sevegina LM (1984) Thermus ruber sp. nov., nom. rev. Int J Syst Bacteriol 34:498–499CrossRefGoogle Scholar
  22. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495CrossRefPubMedGoogle Scholar
  23. Malgas S, van Dyk JS, Pletschke BI (2015) A review of the enzymatic hydrolysis of mannans and synergistic interaction between β-mannanase, β-mannosidase and α-galactosidase. World J Microbiol Biotechnol 31:1167–1175CrossRefPubMedGoogle Scholar
  24. Morel CF, Clarke JT (2009) The use of agalsidase alfa enzyme replacement therapy in the treatment of Fabry disease. Expert Opin Biol Ther 9:631–639CrossRefPubMedGoogle Scholar
  25. Sahm K, John P, Nacke H, Wemheuer B, Grote R, Daniel R, Antranikian R (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662CrossRefPubMedGoogle Scholar
  26. Saiki T, Kobayashi Y, Kawagoe K, Beppu T (1985) Dictyoglomus thermophilum gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 35:253–259CrossRefGoogle Scholar
  27. Tindall BJ, Sikorski J, Lucas S, Goltsman E, Copeland A, Glavina Del Rio T, Nolan M, Tice H, Cheng JF, Han C, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Fähnrich R, Goodwin L, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2010) Complete genome sequence of Meiothermus ruber type strain (21). Stand Genomic Sci 1:26–36CrossRefGoogle Scholar
  28. Wang H, Ma R, Shi P, Xue X, Luo H, Huang H, Bai Y, Yang P, Yao B (2014) A new α-galactosidase from thermoacidophilic Alicyclobacillus sp. A4 with wide acceptor specificity for transglycosylation. Appl Biochem Biotechnol 174(1):328–338CrossRefPubMedGoogle Scholar
  29. Zhou JZ, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Carola Schröder
    • 1
  • Viktoria-Astrid Janzer
    • 1
  • Georg Schirrmacher
    • 2
  • Jörg Claren
    • 2
  • Garabed Antranikian
    • 1
  1. 1.Institute of Technical MicrobiologyHamburg University of TechnologyHamburgGermany
  2. 2.Clariant Produkte (Deutschland) GmbH, Group BiotechnologyMunichGermany

Personalised recommendations