, Volume 20, Issue 5, pp 795–808 | Cite as

Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning

  • Lucia Kraková
  • Katarína Šoltys
  • Jaroslav Budiš
  • Tomáš Grivalský
  • František Ďuriš
  • Domenico Pangallo
  • Tomáš Szemes
Method Paper


Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1–V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing.


Microbial diversity characterization Illumina Mothur Emirge 16S rRNA mcrA DGGE-cloning 



This publication is the result of the projects’ implementation: Comenius University Science Park – 2.phase and REVOGENE—Research centre for molecular genetics (ITMS 26240220067) supported by the Research & Innovation Operational Programme funded by the European Regional Development Fund. This study was also supported by SAS-MOST Joint Research Cooperation (Bilateral project Slovakia-Taiwan) No. SAS-MOST JRP 2014/3: “Exploring Microbial Diversity and Functionality in Thermophilic Bioreactors for Innovation in Biotechnology”.

Supplementary material

792_2016_855_MOESM1_ESM.pdf (537 kb)
Fig. S1. Krona graphs of microorganisms content in sediment and water samples using 16S rRNA universal archaeal primers and analyzed by DGGE-cloning and next generation sequencing (by Mothur and Emirge bioinformatics tools). Fig. S2. Krona graphs of microorganisms content in sediment and water samples using specific primers for archaeal mcrA gene and analyzed by DGGE-cloning and next generation sequencing (by Mothur and Emirge bioinformatics tools). Table S1. Diversity and percentage of bacterial clones detected by semi-nested PCR-DGGE and clone library strategy oriented to 16S rRNA gene. Table S2. Diversity and percentage of archaeal clones detected by semi-nested PCR-DGGE and clone library strategy oriented to 16S rRNA gene. Table S3. Diversity and percentage of methanogen clones detected by semi-nested PCR-DGGE and clone library strategy oriented to mcrA gene. (PDF 537 kb)


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 61:403–410CrossRefGoogle Scholar
  2. Anda D, Makk J, Krett G, Jurecska L, Márialigeti K, Mádl-Szőnyi J, Borsodi AK (2015) Thermophilic prokaryotic communities inhabiting the biofilm and well water of a thermal karst system located in Budapest (Hungary). Extremophiles 19:787–797CrossRefPubMedGoogle Scholar
  3. Antony CP, Murrell JC, Shouche YS (2012) Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol Ecol 81:43–51CrossRefPubMedGoogle Scholar
  4. Bartram AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Neufeld JD (2011) Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl Environ Microbiol 77:3846–3852CrossRefPubMedPubMedCentralGoogle Scholar
  5. Buchholz-Cleven BE, Rattunde B, Straub KL (1997) Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst Appl Microbiol 20:301–309CrossRefGoogle Scholar
  6. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108:4516–4522CrossRefPubMedGoogle Scholar
  7. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chan CS, Chan KG, Tay YL, Chua YH, Goh KM (2015) Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing. Front Microbiol 6:177PubMedPubMedCentralGoogle Scholar
  9. Chang HW, Kim KH, Nam YD, Roh SW, Kim MS, Jeon CO, Oh HM, Bae JW (2008) Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int J Food Microbiol 126:159–166CrossRefPubMedGoogle Scholar
  10. Coman C, Drugă B, Hegedus A, Sicora C, Dragoş N (2013) Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania. Extremophiles 17:523–534CrossRefPubMedGoogle Scholar
  11. Deng L, Zeng G, Fan C, Lu L, Chen X, Chen M, Wu H, He X, He Y (2015) Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Appl Microbiol Biotechnol 99:8259–8269CrossRefPubMedGoogle Scholar
  12. Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907CrossRefPubMedGoogle Scholar
  13. Dziewit L, Pyzik A, Romaniuk K, Sobczak A, Szczesny P, Lipinski L, Bartosik D, Drewniak L (2015) Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities. Front Microbiol 6:694PubMedPubMedCentralGoogle Scholar
  14. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA 109:21390–21395CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, Cole JR (2013) FunGene: the functional gene pipeline and repository. Front. Microbiol 4:291CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fouke BW (2011) Hot spring systems geobiology: abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology 58:170–219CrossRefGoogle Scholar
  18. García-Maldonado JQ, Bebout BM, Everroad RC, López-Cortés A (2015) Evidence of novel phylogenetic lineages of methanogenic Archaea from hypersaline microbial mats. Microb Ecol 69:106–117CrossRefPubMedGoogle Scholar
  19. Ghati A, Paul G (2015) Purification and characterization of a thermo-halophilic, alkali-stable and extremely benzene tolerant esterase from a thermo-halo tolerant Bacillus cereus strain AGP-03, isolated from ‘Bakreshwar’hot spring, India. Process Biochem 50:771–781CrossRefGoogle Scholar
  20. Gobet A, Boetius A, Ramette A (2014) Ecological coherence of diversity patterns derived from classical fingerprinting and next generation sequencing techniques. Environ Microbiol 16:2672–2681CrossRefPubMedGoogle Scholar
  21. Grivalský T, Bučková M, Puškárová A, Kraková L, Pangallo D (2016) Water-related environments: a multistep procedure to assess the diversity and enzymatic properties of cultivable bacteria. World J Microbiol 32:42CrossRefGoogle Scholar
  22. Grzesiak J, Górniak D, Świątecki A, Aleksandrzak-Piekarczyk T, Szatraj K, Zdanowski MK (2015) Microbial community development on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): a comparison. Extremophiles 19:885–897CrossRefPubMedPubMedCentralGoogle Scholar
  23. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huang Q, Dong CZ, Dong RM, Jiang H, Wang S, Wang G, Fang B, Ding X, Niu L, Li X, Zhang C (2011) Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles 15:549–563CrossRefPubMedGoogle Scholar
  25. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95CrossRefGoogle Scholar
  26. Huo W, Zhu W, Mao S (2014) Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats. World J Microbiol 30:669–680CrossRefGoogle Scholar
  27. Juottonen H, Galand PE, Yrjälä K (2006) Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol 157:914–921CrossRefPubMedGoogle Scholar
  28. Kim M, Morrison M, Yu Z (2011) Evaluation of different partial 16S rRNA gene sequence regions for phylogenetic analysis of microbiomes. J Microbiol Methods 84:81–87CrossRefPubMedGoogle Scholar
  29. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 1 41(1):e1CrossRefGoogle Scholar
  30. Kubo K, Knittel K, Amann R, Fukui M, Matsuura K (2011) Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan. Syst Appl Microbiol 34:293–302CrossRefPubMedGoogle Scholar
  31. Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. In: Stackenbrandt E, Goodfellow M (eds). Wiley, New York, 115–148Google Scholar
  32. Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Østerås M, Schrenzel J, François P (2009) Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods 79:266–271CrossRefPubMedPubMedCentralGoogle Scholar
  33. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530CrossRefPubMedGoogle Scholar
  34. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedPubMedCentralGoogle Scholar
  35. Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF (2011) EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol 12:R44CrossRefPubMedPubMedCentralGoogle Scholar
  36. Miseta R, Palatinszky M, Makk J, Márialigeti K, Borsodi AK (2012) Phylogenetic diversity of bacterial communities associated with sulfurous karstic well waters of a Hungarian spa. Geomicrobiol J 29:101–113CrossRefGoogle Scholar
  37. Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a Web browser. BMC Bioinformatics 12:385CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ong SH, Kukkillaya VU, Wilm A, Lay C, Ho EXP, Low L, Hibberd ML, Nagarajan N (2013) species identification and profiling of complex microbial communities using shotgun Illumina sequencing of 16S rRNA amplicon sequences. PLoS One 8:e60811CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pangallo D, Šaková N, Koreňová J, Puškárová A, Kraková L, Valík L, Kuchta T (2014) Microbial diversity and dynamics during the production of May bryndza cheese. Int J Food Microbiol 170:38–43CrossRefPubMedGoogle Scholar
  40. Pilloni G, Granitsiotis MS, Engel M, Lueders T (2012) Testing the limits of 454 pyrotag sequencing: reproducibility, quantitative assessment and comparison to T-RFLP fingerprinting of aquifer microbes. PLoS One 7:e40467CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pires AC, Cleary DF, Almeida A, Cunha A, Dealtry S, Mendonça-Hagler LC, Smalla K, Gomes NC (2012) Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl Environ Microbiol 78:5520–5528CrossRefPubMedPubMedCentralGoogle Scholar
  42. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41(D1):D590–D596CrossRefPubMedGoogle Scholar
  43. Rademacher A, Zakrzewski M, Schlüter A, Schönberg M, Szczepanowski R, Goesmann A, Pühler A, Klocke M (2012) Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing. FEMS Microbiol Ecol 79:785–799CrossRefPubMedGoogle Scholar
  44. Šaková N, Sádecká J, Lejková J, Puškárová A, Koreňová J, Kolek E, Valík Ľ, Kuchta T, Pangallo D (2015) Characterization of May bryndza cheese from various regions in Slovakia based on microbiological, molecular and principal volatile odorants examination. J Food Nutr Res 54:239–251Google Scholar
  45. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shi Y, TaPa M, Li C, Yang H, Zhang T, Gao Y, Sun J, Zeng J, Lin Q, Cao Z, OuTi K (2015) Diversity and space–time dynamics of endophytic archaea from sugar beet in the north slope of Tianshan Mountain revealed by 454 pyrosequencing and T-RFLP. World J Microbiol Biotechnol 31:1031–1039CrossRefPubMedGoogle Scholar
  47. Snelling TJ, Genç B, McKain N, Watson M, Waters SM, Creevey CJ, Wallace RJ (2014) Diversity and community composition of Methanogenic Archaea in the Rumen of Scottish upland sheep assessed by different methods. PLoS One 9:e106491CrossRefPubMedPubMedCentralGoogle Scholar
  48. Song ZQ, Wang FP, Zhi XY, Chen JQ, Zhou EM, Liang F, Xiao X, Tang SK, Jiang HC, Zhang CL, Dong H (2013) Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environ Microbiol 15:1160–1175CrossRefPubMedGoogle Scholar
  49. Starke IC, Vahjen W, Pieper R, Zentek J (2014) The Influence of DNA Extraction Procedure and Primer Set on the Bacterial Community Analysis by Pyrosequencing of Barcoded 16S rRNA Gene Amplicons. Mol Biol Int 10 (Article ID 548683) Google Scholar
  50. Weidler GW, Gerbl FW, Stan-Lotter H (2008) Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Appl Environ Microbiol 74:5934–5942CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59:611–621CrossRefPubMedGoogle Scholar
  52. Wuchter C, Banning E, Mincer TJ, Drenzek NJ, Coolen JL (2013) Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells. Front Microbiol 4:367CrossRefPubMedPubMedCentralGoogle Scholar
  53. Yu D, Kurola JM, Lähde K, Kymäläinen M, Sinkkonen A, Romantschuk M (2014) Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. J Environ Manage 143:54–60CrossRefPubMedGoogle Scholar
  54. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620CrossRefPubMedGoogle Scholar
  55. Zhou HW, Li DF, Tam NFY, Jiang XT, Zhang H, Sheng HF, Qin J, Liu X, Zou F (2011) BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J 5:741–749CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Lucia Kraková
    • 1
  • Katarína Šoltys
    • 2
  • Jaroslav Budiš
    • 3
  • Tomáš Grivalský
    • 1
  • František Ďuriš
    • 4
  • Domenico Pangallo
    • 1
  • Tomáš Szemes
    • 4
    • 5
  1. 1.Institute of Molecular Biology, Slovak Academy of SciencesBratislavaSlovakia
  2. 2.Comenius University Science ParkBratislavaSlovakia
  3. 3.Department of Computer Science, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia
  4. 4.Geneton Ltd.BratislavaSlovakia
  5. 5.Department of Molecular Biology, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations