, Volume 20, Issue 4, pp 537–546 | Cite as

Knockout and functional analysis of two DExD/H-box family helicase genes in Sulfolobus islandicus REY15A

  • Xueguo Song
  • Qihong Huang
  • Jinfeng Ni
  • Yang Yu
  • Yulong ShenEmail author
Original Paper


DExD/H-box helicases represent the largest family of helicases. They belong to superfamily 2 helicases and participate in nucleotide metabolism, ribosome biogenesis, and nucleocytoplasmic transport. The biochemical properties and structures of some DExD/H-box helicases in the archaea have been documented, but many of them have not been characterized; and reports on in vivo functional analyses are limited. In this study, we attempted gene knockout of 8 putative DExD/H-box helicases in Sulfolobus islandicus REY15A and obtained two deletion mutants, SiRe_0681 and SiRe_1605. We determined that ΔSiRe_0681 grew faster than wild type cells in the presence of methyl methanesulfonate (MMS). Flow cytometry analysis showed that this strain had fewer G1/S phase cells than the wild type, and the genes coding for cell division proteins were up-regulated. The stain ΔSiRe_1605 was more sensitive to MMS than the wild type cell, and many nucleotide metabolism and DNA repair enzymes were found to be down-regulated. Intriguingly, deletion of either gene led to silencing simultaneously of over 80 genes located at a specific region. This study provides a novel insight into the in vivo functions of predicted DExD/H-box family helicases in the archaea.


Archaea Sulfolobus islandicus REY15A DExD/H-box helicases Gene knockout In vivo functions 



We thank Dr. Qunxin She from University of Copenhagen for providing S. islandicus strains and the plasmid and all the members of our lab for helpful discussions. This work was supported by grants from the National Science Foundation of China (31470046 to Y.S. and 31470200 to J.N).

Supplementary material

792_2016_847_MOESM1_ESM.doc (418 kb)
Supplementary material 1 (DOC 418 kb)


  1. Boshoff HI, Reed MB, Barry CE, Mizrahi V (2003) DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113:183–193CrossRefPubMedGoogle Scholar
  2. Caruthers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12:123–133CrossRefPubMedGoogle Scholar
  3. Chamieh H, Ibrahim H, Kozah J (2016) Genome-wide identification of SF1 and SF2 helicases from archaea. Gene 576:214–228CrossRefPubMedGoogle Scholar
  4. Chang M, Collet B, Nie P, Lester K, Campbell S, Secombes CJ, Zou J (2011) Expression and functional characterization of the RIG-I-like receptors MDA5 and LGP2 in Rainbow trout (Oncorhynchus mykiss). J Virol 85:8403–8412CrossRefPubMedPubMedCentralGoogle Scholar
  5. Deng L, Zhu H, Chen Z, Liang YX, She Q (2009) Unmarked gene deletion and host–vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles 13:735–746CrossRefPubMedGoogle Scholar
  6. Dillingham M (2011) Superfamily I helicases as modular components of DNA-processing machines. Biochem Soc Trans 39:413–423CrossRefPubMedGoogle Scholar
  7. Fairman-Williams ME, Guenther U-P, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20:313–324CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fujikane R, Komori K, Shinagawa H, Ishino Y (2005) Identification of a novel helicase activity unwinding branched DNAs from the hyperthermophilic archaeon, Pyrococcus furiosus. J Biol Chem 280:12351–12358CrossRefPubMedGoogle Scholar
  9. Grifo J, Tahara S, Leis J, Morgan M, Shatkin A, Merrick W (1982) Characterization of eukaryotic initiation factor 4A, a protein involved in ATP-dependent binding of globin mRNA. J Biol Chem 257:5246–5252PubMedGoogle Scholar
  10. Guy CP, Bolt EL (2005) Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res 33:3678–3690CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hong Y, Chu M, Li Y, Ni J, Sheng D, Hou G, She Q, Shen Y (2012) Dissection of the functional domains of an archaeal Holliday junction helicase. DNA Repair 11:102–111CrossRefPubMedGoogle Scholar
  12. Huang Q, Li Y, Zeng C, Song T, Yan Z, Ni J, She Q, Shen Y (2015) Genetic analysis of the Holliday junction resolvases Hje and Hjc in Sulfolobus islandicus. Extremophiles 19:505–514CrossRefPubMedGoogle Scholar
  13. Kuper J, Wolski SC, Michels G, Kisker C (2012) Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J 31:494–502CrossRefPubMedGoogle Scholar
  14. Leung DW, Amarasinghe GK (2012) Structural insights into RNA recognition and activation of RIG-I-like receptors. Curr Opin Struct Biol 22:297–303CrossRefPubMedPubMedCentralGoogle Scholar
  15. Li Z, Lu S, Hou G, Ma X, Sheng D, Ni J, Shen Y (2008) Hjm/Hel308A DNA helicase from Sulfolobus tokodaii promotes replication fork regression and interacts with Hjc endonuclease in vitro. J Bacteriol 190:3006–3017CrossRefPubMedPubMedCentralGoogle Scholar
  16. Li S, Zhang C, Peng N, Liang Y, She Q (2012) Construction of deletion mutants and genetic analysis of xpbs genes in Sulfolobus islandicus. J Huazhong Agric Univ 31:28–33Google Scholar
  17. Linder P, Jankowsky E (2011) From unwinding to clamping—the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12:505–516CrossRefPubMedGoogle Scholar
  18. Liu W, She Q, Liang Y (2009) Genetic analysis of reverse gyrase gene in Sulfolobus islandicus. J Huazhong Agric Univ 28:39–42Google Scholar
  19. Lohman TM, Tomko EJ, Wu CG (2008) Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 9:391–401CrossRefPubMedGoogle Scholar
  20. Nagaoka E, Hidese R, Imanaka T, Fujiwara S (2013) Importance and determinants of induction of cold-induced DEAD RNA helicase in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 195:3442–3450CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ordonez H, Shuman S (2013) Mycobacterium smegmatis Lhr Is a DNA-dependent ATPase and a 3′-to-5′ DNA translocase and helicase that prefers to unwind 3′-tailed RNA: DNA hybrids. J Biol Chem 288:14125–14134CrossRefPubMedPubMedCentralGoogle Scholar
  22. Patel SS, Picha KM (2000) Structure and function of hexameric helicases 1. Annu Rev Biochem 69:651–697CrossRefPubMedGoogle Scholar
  23. Pyle AM (2008) Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys 37:317–336CrossRefPubMedGoogle Scholar
  24. Qin N, Tan X, Jiao Y, Liu L, Zhao W, Yang S, Jia A (2014) RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci Rep 4:5467PubMedPubMedCentralGoogle Scholar
  25. Rand L, Hinds J, Springer B, Sander P, Buxton RS, Davis EO (2003) The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA. Mol Microbiol 50:1031–1042CrossRefPubMedGoogle Scholar
  26. Reuven NB, Koonin EV, Rudd KE, Deutscher MP (1995) The gene for the longest known Escherichia coli protein is a member of helicase superfamily II. J Bacteriol 177:5393–5400PubMedPubMedCentralGoogle Scholar
  27. Richards JD, Cubeddu L, Roberts J, Liu H, White MF (2008) The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner. J Mol Biol 376:634–644CrossRefPubMedGoogle Scholar
  28. Rouillon C, White MF (2010) The XBP-Bax1 helicase-nuclease complex unwinds and cleaves DNA: implications for eukaryal and archaeal nucleotide excision repair. J Biol Chem 285:11013–11022CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rudolf J, Rouillon C, Schwarz-Linek U, White MF (2009) The helicase XPD unwinds bubble structures and is not stalled by DNA lesions removed by the nucleotide excision repair pathway. Nucleic Acids Res 38:931–941CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sengoku T, Nureki O, Nakamura A, Kobayashi S, Yokoyama S (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125:287–300CrossRefPubMedGoogle Scholar
  31. Shimada Y, Fukuda W, Akada Y, Ishida M, Nakayama J, Imanaka T, Fujiwara S (2009) Property of cold inducible DEAD-box RNA helicase in hyperthermophilic archaea. Biochem Biophys Res Commun 389:622–627CrossRefPubMedGoogle Scholar
  32. Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50CrossRefPubMedGoogle Scholar
  33. Story RM, Li H, Abelson JN (2001) Crystal structure of a DEAD box protein from the hyperthermophile Methanococcus jannaschii. Proc Natl Acad Sci 98:1465–1470CrossRefPubMedPubMedCentralGoogle Scholar
  34. Valenti A, Napoli A, Ferrara MC, Nadal M, Rossi M, Ciaramella M (2006) Selective degradation of reverse gyrase and DNA fragmentation induced by alkylating agent in the archaeon Sulfolobus solfataricus. Nucleic Acids Res 34:2098–2108CrossRefPubMedPubMedCentralGoogle Scholar
  35. Woodman IL, Briggs GS, Bolt EL (2007) Archaeal Hel308 domain V couples DNA binding to ATP hydrolysis and positions DNA for unwinding over the helicase ratchet. J Mol Biol 374:1139–1144CrossRefPubMedGoogle Scholar
  36. Zhang C, Tian B, Li S, Ao X, Dalgaard K, Gokce S, Liang Y, She Q (2013) Genetic manipulation in Sulfolobus islandicus and functional analysis of DNA repair genes. Biochem Soc Trans 41:405–410CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Xueguo Song
    • 1
  • Qihong Huang
    • 1
  • Jinfeng Ni
    • 1
  • Yang Yu
    • 1
  • Yulong Shen
    • 1
    Email author
  1. 1.State Key Laboratory of Microbial TechnologyShandong UniversityJinanChina

Personalised recommendations