Advertisement

Extremophiles

, Volume 20, Issue 3, pp 311–321 | Cite as

Microbial community structure analysis of a benzoate-degrading halophilic archaeal enrichment

  • Sonal Dalvi
  • Noha H. Youssef
  • Babu Z. FathepureEmail author
Original Paper

Abstract

A benzoate-degrading archaeal enrichment was developed using sediment samples from Rozel Point at Great Salt Lake, UT. The enrichment degraded benzoate as the sole carbon source at salinity ranging from 2.0 to 5.0 M NaCl with highest rate of degradation observed at 4.0 M. The enrichment was also tested for its ability to grow on other aromatic compounds such as 4-hydroxybenzoic acid (4-HBA), gentisic acid, protocatechuic acid (PCA), catechol, benzene and toluene as the sole sources of carbon and energy. Of these, the culture only utilized 4-HBA as the carbon source. To determine the initial steps in benzoate degradation pathway, a survey of ring-oxidizing and ring-cleaving genes was performed using degenerate PCR primers. Results showed the presence of 4-hydroxybenzoate 3-monooxygenase (4-HBMO) and protocatechuate 3, 4-dioxygenase (3,4-PCA) genes suggesting that the archaeal enrichment might degrade benzoate to 4-HBA that is further converted to PCA by 4-HBMO and, thus, formed PCA would undergo ring-cleavage by 3,4-PCA to form intermediates that enter the Krebs cycle. Small subunit rRNA gene-based diversity survey revealed that the enrichment consisted entirely of class Halobacteria members belonging to the genera Halopenitus, Halosarcina, Natronomonas, Halosimplex, Halorubrum, Salinarchaeum and Haloterrigena. Of these, Halopenitus was the dominant group accounting for almost 91 % of the total sequences suggesting their potential role in degrading oxygenated aromatic compounds at extreme salinity.

Keywords

Halophilic archaea Benzoate degradation Pyrosequencing High salinity Aromatic compounds 

Notes

Acknowledgments

We thank Dr. J. Parnell, Utah State University for collecting sediment samples from Rozel Point at the Great Salt Lake, UT. We also thank Dr. Scot Dowd, Research and Testing Laboratory, Lubbock, TX, USA for pyrosequencing. This work was supported by the National Science Foundation (Grant OCE1049301) and the College of Arts and Sciences at Oklahoma State University.

References

  1. Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328CrossRefPubMedGoogle Scholar
  2. Almeida-Dalmet S, Sikaroodi M, Gillevet PM, Litchfield CD, Baxter BK (2015) Temporal study of the microbial diversity of the north arm of Great Salt Lake, Utah. Microorganisms 3:310–326CrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  4. Amoozegar MA, Makhdoumi-Kakhki A, Shahzadeh Fazeli SA, Azarbaijani R, Ventosa A (2012) Halopenitus persicus gen. nov., sp. nov., an archaeon from an inland salt lake. Int J Syst Evol Microbiol 62:1932–1936CrossRefPubMedGoogle Scholar
  5. Amoozegar MA, Makhdoumi-Kakhki A, Mehrshad M, Fazeli SA, Ventosa A (2013) Halopenitus malekzadehii sp. nov., an extremely halophilic archaeon isolated from a salt lake. Int J Syst Evol Microbiol 63:3232–3236CrossRefPubMedGoogle Scholar
  6. Azhari NE, Chabaud S, Percept A, Bru D, Martin-Laurent F (2007) pcaH, a molecular marker for estimating the diversity of the protocatechuate-degrading bacterial community in the soil environment. Pest Manag Sci 63:459–467CrossRefPubMedGoogle Scholar
  7. Baxter B, Litchfield C, Sowers K, Griffith J, Dassarma P, Dassarma S (2005) Microbial diversity of Great Salt Lake. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Netherlands, pp 9–25CrossRefGoogle Scholar
  8. Bertrand J, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Letts Appl Microbiol 11:260–263CrossRefGoogle Scholar
  9. Bonfá MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676CrossRefPubMedGoogle Scholar
  10. Bortz LC, Cook SA, Morrison OJ (1985) Great Salt Lake Area, Utah. In: Gries RR, Dyer RC (eds) Seismic exploration of the rocky mountain region, Rocky Mountain Association of Geologists, Denver, Colorado, pp 275–281Google Scholar
  11. Burns DG, Janssen PH, Itoh T, Minegishi H, Usami R, Kamekura M, Dyall-Smith ML (2010) Natronomonas moolapensis sp. nov., non-alkaliphilic isolates recovered from a solar saltern crystallizer pond, and emended description of the genus Natronomonas. Int J Syst Evol Microbiol 60:1173–1176CrossRefPubMedGoogle Scholar
  12. Chen DW, Zhang Y, Jiang CY, Liu SJ (2014) Benzoate metabolism intermediate benzoyl coenzyme A affects gentisate pathway regulation in Comamonas testosteroni. Appl Environ Microbiol 80:4051–4062CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cuadros-Orellana S, Pohlschröder M, Durrant LR (2006) Isolation and characterization of halophilic archaea able to grow in aromatic compounds. Int Biodeterior Biodegrad 57:151–154CrossRefGoogle Scholar
  14. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072CrossRefPubMedPubMedCentralGoogle Scholar
  15. Eardley AJ (1963) Oil seeps at Rozel Point. Utah Geol Mineral Survey Spec Stud 5:32Google Scholar
  16. Emerson D, Chauhan S, Oriel P, Breznak JA (1994) Haloferax sp. D1227, a halophilic archaeon capable of growth on aromatic compounds. Arch Microbiol 161:445–452CrossRefGoogle Scholar
  17. Erdoğmuş S, Mutlu B, Korcan S, Güven K, Konuk M (2013) Aromatic hydrocarbon degradation by halophilic archaea isolated from Çamaltı Saltern, Turkey. Water Air Soil Pollut 224:1–9Google Scholar
  18. Fairley D, Boyd D, Sharma N, Allen C, Morgan P, Larkin M (2002) Aerobic metabolism of 4-hydroxybenzoic acid in archaea via an unusual pathway involving an intramolecular migration (NIH shift). Appl Environ Microbiol 68:6246–6255CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173CrossRefPubMedPubMedCentralGoogle Scholar
  20. Felsenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  21. Fu W, Oriel P (1998) Gentisate 1,2-dioxygenase from Haloferax sp. D1227. Extremophiles 2:439–446CrossRefPubMedGoogle Scholar
  22. Fu W, Oriel P (1999) Degradation of 3-phenylpropionic acid by Haloferax sp. D1227. Extremophiles 3:45–53CrossRefPubMedGoogle Scholar
  23. Garcia MT, Ventosa A, Mellado E (2005) Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiol Ecol 54:97–109CrossRefPubMedGoogle Scholar
  24. Hassibe WR, Keck WG (1978) The Great Salt Lake. US Geological Survey, RestonGoogle Scholar
  25. Kulichevskaya I, Milekhina E, Borzenkov I, Zvyagintseva I, Belyaev S (1991) Oxidation of petroleum-hydrocarbons by extremely halophilic archaebacteria. Microbiology 60:596–601Google Scholar
  26. Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol and Biotechnol 15:74–92CrossRefGoogle Scholar
  27. Loffler FE, Sanford RA, Tiedje JM (1996) Initial characterization of a reductive dehalogenase from Desulfitobacterium chlororespirans Co23. Appl Environ Microbiol 62:3809–3813PubMedPubMedCentralGoogle Scholar
  28. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663CrossRefPubMedGoogle Scholar
  29. Martins LF, Peixoto RS (2012) Biodegradation of petroleum hydrocarbons in hypersaline environments. Braz J Microbiol 43:865–872CrossRefPubMedPubMedCentralGoogle Scholar
  30. Meuser JE, Baxter BK, Spear JR, Peters JW, Posewitz MC, Boyd ES (2013) Contrasting patterns of community assembly in the stratified water column of Great Salt Lake. Utah. Microb Ecol. 66:268–280CrossRefPubMedGoogle Scholar
  31. Minegishi H, Kamekura M, Kitajima-Ihara T, Nakasone K, Echigo A, Shimane Y, Usami R, Itoh T, Ihara K (2012) Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. Int J Syst Evol Microbiol 62:188–195CrossRefPubMedGoogle Scholar
  32. Morimoto SHO, Togami K, Ogawa N, Hasebe A, Fujii T (2005) Analysis of a bacterial community in 3-chlorobenzoate-contaminated soil by PCR-DGGE targeting the 16S rRNA gene and benzoate 1,2-dioxygenase gene (benA). Microbes Environ 20:151–159CrossRefGoogle Scholar
  33. Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225CrossRefPubMedGoogle Scholar
  34. Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3:387–398CrossRefGoogle Scholar
  35. Parnell JJ, Rompato G, Crowl TA, Weimer BC, Pfrender ME (2011) Phylogenetic distance in Great Salt Lake microbial communities. Aquat Microbiol Ecol 64:267–273CrossRefGoogle Scholar
  36. Pernetti M, Di Palma L (2005) Experimental evaluation of inhibition effects of saline wastewater on activated sludge. Environ Technol 26:695–703CrossRefPubMedGoogle Scholar
  37. Reddy CC, Vaidyanathan CS (1975) Purification, properties and induction of a specific benzoate-4-hydroxylase from Aspergillus niger (UBC 814). Biochim Biophysic Acta (BBA) Enzymol 384:46–57CrossRefGoogle Scholar
  38. Sei A, Fathepure B (2009) Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel Point at Great Salt Lake. J Appl Microbiol 107:2001–2008CrossRefPubMedGoogle Scholar
  39. Sinninghe Damste´ JS, de Leeuw JW, Kock-van Dalen AC, de Zeeuw MA, de Lange F, Rijpstra WIC, Schenck PA (1987) The occurrence and identification of series of organic sulphur compounds in oils and sediment extracts: I. A study of Rozel Point Oil (USA). Geochim Cosmochim Acta 51:2369–2391CrossRefGoogle Scholar
  40. Sorokin DY, Janssen AJH, Muyzer G (2011) Biodegradation potential of halo (alkali) philic prokaryotes. Critical Rev Environ Sci and Technol 42:811–856CrossRefGoogle Scholar
  41. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol and Evol 9:678–687Google Scholar
  42. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231CrossRefPubMedGoogle Scholar
  45. Tazi L, Breakwell DP, Harker AR, Crandall KA (2014) Life in extreme environments: microbial diversity in Great Salt Lake, Utah. Extremophiles 18:525–535CrossRefPubMedGoogle Scholar
  46. Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD, Kamekura M (2002) Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452CrossRefPubMedGoogle Scholar
  47. Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359PubMedPubMedCentralGoogle Scholar
  48. Wolin E, Wolin MJ, Wolfe R (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886PubMedGoogle Scholar
  49. Woolard C, Irvine R (1995) Treatment of hypersaline wastewater in the sequencing batch reactor. Water Res 29:1159–1168CrossRefGoogle Scholar
  50. Zvyagintseva I, Belyaev S, Borzenkov I, Kostrikina N, Milekhina E, Ivanov M (1995) Halophilic archaebacteria from the Kalamkass oil field. Microbiology New York 64(1):83–87Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Sonal Dalvi
    • 1
  • Noha H. Youssef
    • 1
  • Babu Z. Fathepure
    • 1
    Email author
  1. 1.Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterUSA

Personalised recommendations