Advertisement

Extremophiles

, Volume 20, Issue 3, pp 235–250 | Cite as

Oil removal and effects of spilled oil on active microbial communities in close to salt-saturation brines

  • Yannick Y. Corsellis
  • Marc M. Krasovec
  • Léa L. Sylvi
  • Philippe P. Cuny
  • Cécile C. Militon
Review

Abstract

Abiotic and biotic processes associated with the degradation of a light petroleum in brines close to the salt-saturation (~31 %) and the effect of labile organic matter (LOM) supply (casaminoacids/citrate; 0.2 and 0.1 % w/v, respectively) were followed during an incubation of 30 days. After 4-week incubation at 40 °C under light/dark cycles, a 24 % of abiotic degradation was observed in untreated brines. The stimulation of native brines community with LOM addition allowed an additional 12.8 % oil attenuation due to biodegradation processes. Successional changes in the active microbial community structure due to the oil contamination (16S rRNA DGGE approach) showed the selection of one phylotype affiliated to Salinibacter and the disappearance of Haloquadratum walsbyi in untreated brines. In LOM-amended microcosms, phylotypes related to Salinibacter, Haloarcula, Haloterrigena and Halorhabdus were selected. An effect of hydrocarbon contamination was only observed in the bacterial community with the inhibition of two dominant proteobacterial phylotypes. This study further confirms that short-term and moderate oil biodegradation is possible in LOM-stimulated brines. Biodegradation should be much more reduced under in situ conditions. Self-cleaning capacities of close to saturation hypersaline lakes appears, therefore very limited compared to non-extreme haline environments.

Keywords

Hydrocarbon biodegradation Hypersaline water Active bacterial and archaeal communities Hydrocarbonoclastic strains DGGE 16S rRNA 

Notes

Acknowledgments

The work was carried out as part of Yannick Corsellis’s PhD research, of Marc Krasovec’s master these and of the French National Program EC2CO BEMOL (Biodégradation des hydrocarbures dans les Écosystèmes hypersalés: Mythe Ou réaLité ?). We thank the Centre National de la Recherche Scientifique (CNRS) and the Institut National des Sciences de l’Univers (INSU) for financial support. Yannick Corsellis was granted a MERNT fellowship (Ministry of Education, Research and Technology, France). We thank the Salins Company for given us access to their hypersaline lake, Anne-Marie Abrard and Georges Argyris for the valuable help for the sampling period. We dedicate this paper to the memory of Michel Matra.

Supplementary material

792_2016_818_MOESM1_ESM.pptx (472 kb)
Supplementary material 1 (PPTX 471 kb)

References

  1. Al-Mailem DM, Sorkhoh NA, Al-Awadhi H et al (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328CrossRefPubMedGoogle Scholar
  2. Al-Mailem DM, Eliyas M, Radwan SS (2012) Enhanced haloarchaeal oil removal in hypersaline environments via organic nitrogen fertilization and illumination. Extremophiles 16:751–758CrossRefPubMedGoogle Scholar
  3. Al-Mailem DM, Eliyas M, Radwan SS (2013a) Bioremediation of oily hypersaline soil and water via potassium and magnesium amendment. Can J Microbiol 59:837–844CrossRefPubMedGoogle Scholar
  4. Al-Mailem DM, Eliyas M, Radwan SS (2013b) Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17:463–470CrossRefPubMedGoogle Scholar
  5. Al-Mailem D, Eliyas M, Khanafer M, Radwan S (2014a) Culture-dependent and culture-independent analysis of hydrocarbonoclastic microorganisms indigenous to hypersaline environments in Kuwait. Microb Ecol 67:857–865CrossRefPubMedGoogle Scholar
  6. Al-Mailem DM, Eliyas M, Radwan S (2014b) Enhanced bioremediation of oil-polluted, hypersaline, coastal areas in Kuwait via vitamin-fertilization. Environ Sci Pollut Res 21:3386–3394CrossRefGoogle Scholar
  7. Alonso-Gutiérrez J, Figueras A, Albaigés J et al (2009) Bacterial communities from shoreline environments (Costa da Morte, Northwestern Spain) affected by the Prestige oil spill. Appl Environ Microbiol 75:3407–3418CrossRefPubMedPubMedCentralGoogle Scholar
  8. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  9. Antón J, Oren A, Benlloch S, et al. (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491CrossRefPubMedGoogle Scholar
  10. Atlas RM (1975) Effects of temperature and crude oil composition on petroleum biodegradation. Appl Microbiol 30:396–403PubMedPubMedCentralGoogle Scholar
  11. Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263CrossRefGoogle Scholar
  12. Bingeman CW, Varner JE, Martin WP (1953) The effect of the addition of organic materials on the decomposition of an organic soil. Soil Sci Soc Am J 17:34. doi: 10.2136/sssaj1953.03615995001700010008x CrossRefGoogle Scholar
  13. Blanck H, Dahl B (1998) Recovery of marine periphyton communities around a Swedish marina after the ban of TBT use in antifouling paint. Mar Pollut Bull 36:437–442CrossRefGoogle Scholar
  14. Bonfa MR, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676CrossRefPubMedGoogle Scholar
  15. Burns DG, Janssen PH, Itoh T, et al. (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392CrossRefPubMedGoogle Scholar
  16. Casamayor EO, Calderón-Paz JI, Pedrós-Alió C (2000) 5S rRNA fingerprints of marine bacteria, halophilic archaea and natural prokaryotic assemblages along a salinity gradient. FEMS Microbiol Ecol 34:113–119CrossRefPubMedGoogle Scholar
  17. Delille D, Delille B, Pelletier E (2002) Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: the microbial response. Microb Ecol 44:118–126CrossRefPubMedGoogle Scholar
  18. Djeridi I, Militon C, Grossi V, Cuny P (2013) Evidence for surfactant production by the haloarchaeon Haloferax sp. MSNC14 in hydrocarbon-containing media. Extremophiles 17:669–675CrossRefPubMedGoogle Scholar
  19. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol. doi: 10.3389/fmicb.2014.00173 PubMedPubMedCentralGoogle Scholar
  21. Gertler C, Yakimov MM, Malpass MC, Golyshin PN (2010) Shipping-related accidental and deliberate release into the environment. In: Handbook of Hydrocarbon and Lipid Microbiology. Springer, pp 243–256Google Scholar
  22. Ghai R, Pašić L, Fernández AB, et al. (2011) New Abundant Microbial Groups in Aquatic Hypersaline Environments. Sci Rep. doi: 10.1038/srep00135 PubMedPubMedCentralGoogle Scholar
  23. Gomariz M, Martínez-García M, Santos F, et al. (2015) From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists. ISME J 9:16–31. doi: 10.1038/ismej.2014.95 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Grossi V, Cravo-Laureau C, Guyoneaud R, et al. (2008) Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: A summary. Org Geochem 39:1197–1203. doi:  10.1016/j.orggeochem.2008.02.010 CrossRefGoogle Scholar
  25. Hamme JDV, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549. doi: 10.1128/MMBR.67.4.503-549.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  27. Hart DJ, Vreeland RH (1988) Changes in the hydrophobic-hydrophilic cell surface character of Halomonas elongata in response to NaCl. J Bacteriol 170:132–135PubMedPubMedCentralGoogle Scholar
  28. Head IM, Jones DM, Röling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182CrossRefPubMedGoogle Scholar
  29. Hylland K (2006) Polycyclic Aromatic Hydrocarbon (PAH) Ecotoxicology in Marine Ecosystems. J Toxicol Environ Health A 69:109–123. doi: 10.1080/15287390500259327 CrossRefPubMedGoogle Scholar
  30. Jurelevicius D, Alvarez VM, Marques JM, et al. (2013) Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine, and hypersaline water-containing microcosms. Appl Environ Microbiol 79:5927–5935CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jurelevicius D, de Almeida Couto CR, Alvarez VM et al (2014) Response of the archaeal community to simulated petroleum hydrocarbon contamination in marine and hypersaline ecosystems. Water Air Soil Pollut 225:1–12CrossRefGoogle Scholar
  32. Kebbouche-Gana S, Gana ML, Khemili S et al (2009) Isolation and characterization of halophilic Archaea able to produce biosurfactants. J Ind Microbiol Biotechnol 36:727–738CrossRefPubMedGoogle Scholar
  33. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  34. Lane DJ, Pace B, Olsen GJ, et al. (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci 82:6955–6959CrossRefPubMedPubMedCentralGoogle Scholar
  35. Leahy J, Colwell R (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315PubMedPubMedCentralGoogle Scholar
  36. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682CrossRefPubMedGoogle Scholar
  37. MacNaughton SJ, Stephen JR, Venosa AD et al (1999) Microbial population changes during bioremediation of an experimental oil spill. Appl Environ Microbiol 65:3566–3574PubMedPubMedCentralGoogle Scholar
  38. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663CrossRefPubMedGoogle Scholar
  39. McGenity TJ (2010) Halophilic hydrocarbon degraders. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag Berlin Heidelberg, Berlin, pp 1939–1951Google Scholar
  40. Militon C, Jézéquel R, Gilbert F, et al. (2015) Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes. Environ Sci Pollut Res 22:15260–15272CrossRefGoogle Scholar
  41. Mutlu MB, Martínez-García M, Santos F, et al. (2008) Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol Ecol 65:474–483, doi: 10.1111/j.1574-6941.2008.00510.x CrossRefPubMedGoogle Scholar
  42. Nomura M, Gourse R, Baughman G (1984) Regulation of the Synthesis of Ribosomes and Ribosomal Components. Annu Rev Biochem 53:75–117. doi: 10.1146/annurev.bi.53.070184.000451 CrossRefPubMedGoogle Scholar
  43. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedPubMedCentralGoogle Scholar
  44. Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72CrossRefGoogle Scholar
  45. Oren A, Arahal DR, Ventosa A (2009) Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59:637–642CrossRefPubMedGoogle Scholar
  46. Pérez-Pantoja D, González B, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin Heidelberg, Berlin, pp 799–837CrossRefGoogle Scholar
  47. Plotnikova EG, Altyntseva OV, Kosheleva IA et al (2001) Bacterial degraders of polycyclic aromatic hydrocarbons isolated from salt-contaminated soils and bottom sediments in salt mining areas. Microbiology 70:51–58. doi: 10.1023/A:1004892804670 CrossRefGoogle Scholar
  48. Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci 109:20292–20297. doi:  10.1073/pnas.1108756108 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rhykerd RL, Weaver RW, McInnes KJ (1995) Influence of salinity on bioremediation of oil in soil. Environ Pollut 90:127–130CrossRefPubMedGoogle Scholar
  50. Rojo F (2010) Enzymes for aerobic degradation of alkanes. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin Heidelberg, Berlin, pp 781–798CrossRefGoogle Scholar
  51. Röling WF, Milner MG, Jones DM et al (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70:2603–2613CrossRefPubMedPubMedCentralGoogle Scholar
  52. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  53. Schneegurt MA (2012) Media and conditions for the growth of halophilic and halotolerant bacteria and archaea. In: Advances in Understanding the Biology of Halophilic Microorganisms. Springer, pp 35–58Google Scholar
  54. Shimizu S (2001) Vitamins and related compounds: microbial production. In: Rehm H-J, Reed G (eds) Biotechnology. Wiley, New York, pp 318–340Google Scholar
  55. Southworth GR (1979) The role of volatilization in removing polycyclic aromatic hydrocarbons from aquatic environments. Bull Environ Contam Toxicol 21:507–514. doi: 10.1007/BF01685462 CrossRefPubMedGoogle Scholar
  56. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tapilatu YH, Grossi V, Acquaviva M et al (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231CrossRefPubMedGoogle Scholar
  58. Usami R, Fukushima T, Mizuki T, et al. (2005) Organic solvent tolerance of halophilic archaea, Haloarcula strains: Effects of NaCl concentration on the tolerance and polar lipid composition. J Biosci Bioeng 99:169–174. doi: 10.1263/jbb.99.169 CrossRefPubMedGoogle Scholar
  59. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedPubMedCentralGoogle Scholar
  60. Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:353–359PubMedPubMedCentralGoogle Scholar
  61. Wessel N, Santos R, Menard D et al (2010) Relationship between PAH biotransformation as measured by biliary metabolites and EROD activity, and genotoxicity in juveniles of sole (Solea solea). Mar Environ Res 69(Suppl):S71–S73. doi: 10.1016/j.marenvres.2010.03.004 CrossRefPubMedGoogle Scholar
  62. Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a Search-Based Approach to Chimera Identification for 16S rRNA Sequences. Appl Environ Microbiol 78:717–725. doi:  10.1128/AEM.06516-11 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Yakimov MM, Denaro R, Genovese M, et al. (2005) Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7:1426–1441CrossRefPubMedGoogle Scholar
  64. Zheng S, Qiu X, Chen B et al (2011) Toxicity evaluation of benzo [a] pyrene on the polychaete Perinereis nuntia using subtractive cDNA libraries. Aquat Toxicol 105:279–291CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yannick Y. Corsellis
    • 1
  • Marc M. Krasovec
    • 2
  • Léa L. Sylvi
    • 1
  • Philippe P. Cuny
    • 1
  • Cécile C. Militon
    • 1
  1. 1.Aix Marseille Université, CNRS/INSU, Université de Toulon, IRDMediterranean Institute of Oceanography (MIO) UM 110Marseille Cedex 09France
  2. 2.Oceanological Observatory of Banyuls, UMR 7232Banyuls-sur-merFrance

Personalised recommendations