, Volume 20, Issue 2, pp 195–205 | Cite as

DNA Gyrase of Deinococcus radiodurans is characterized as Type II bacterial topoisomerase and its activity is differentially regulated by PprA in vitro

  • Swathi Kota
  • Yogendra S. Rajpurohit
  • Vijaya K. Charaka
  • Katsuya Satoh
  • Issay Narumi
  • Hari S. MisraEmail author
Original Paper


The multipartite genome of Deinococcus radiodurans forms toroidal structure. It encodes topoisomerase IB and both the subunits of DNA gyrase (DrGyr) while lacks other bacterial topoisomerases. Recently, PprA a pleiotropic protein involved in radiation resistance in D. radiodurans has been suggested for having roles in cell division and genome maintenance. In vivo interaction of PprA with topoisomerases has also been shown. DrGyr constituted from recombinant gyrase A and gyrase B subunits showed decatenation, relaxation and supercoiling activities. Wild type PprA stimulated DNA relaxation activity while inhibited supercoiling activity of DrGyr. Lysine133 to glutamic acid (K133E) and tryptophane183 to arginine (W183R) replacements resulted loss of DNA binding activity in PprA and that showed very little effect on DrGyr activities in vitro. Interestingly, wild type PprA and its K133E derivative continued interacting with GyrA in vivo while W183R, which formed relatively short oligomers did not interact with GyrA. The size of nucleoid in PprA mutant (1.9564 ± 0.324 µm) was significantly bigger than the wild type (1.6437 ± 0.345 µm). Thus, we showed that DrGyr confers all three activities of bacterial type IIA family DNA topoisomerases, which are differentially regulated by PprA, highlighting the significant role of PprA in DrGyr activity regulation and genome maintenance in D. radiodurans.


Deinococcus DNA gyrase Genome maintenance PprA Radioresistance 



We thank Dr. S. Chattopadhyay for his comments and supports and Drs Kruti Mehta-Modi, Anubrata Das and Chitra S Misra for their editorial and technical comments in this manuscript.

Supplementary material

792_2016_814_MOESM1_ESM.pdf (563 kb)
Supplementary material 1 (PDF 562 kb)


  1. Adachi M, Hirayama H, Shimizu R, Satoh K, Narumi I, Kuroki R (2014) Interaction of double-stranded DNA with polymerized PprA protein from Deinococcus radiodurans. Protein Sci 23:1349–1358PubMedCentralCrossRefPubMedGoogle Scholar
  2. Buck GR, Zechiedrich EL (2004) DNA disentangling by type-2 topoisomerases. J Mol Biol 340:933–939CrossRefPubMedGoogle Scholar
  3. Charaka VK, Misra HS (2012) Functional characterization of chromosome I partitioning system in Deinococcus radiodurans for its role in genome segregation. J Bacteriol 194:5739–5748PubMedCentralCrossRefPubMedGoogle Scholar
  4. Chatterji M, Nagaraja V (2001) GyrI: a counter-defensive strategy against proteinaceous inhibitors of DNA gyrase. EMBO Rep 3:261–267CrossRefGoogle Scholar
  5. Daly MJ, Gaidamakova EK, Matrosova VY, Kiang JG, Fukumoto R, Lee DY, Wehr NB, Viteri GA, Berlett BS, Levine RL (2010) Small-molecule antioxidant proteome-shields in Deinococcus radiodurans. PLoS One 5:e12570PubMedCentralCrossRefPubMedGoogle Scholar
  6. de la Tour CB, Passot FM, Toueille M, Mirabella B, Guérin P, Blanchard L, Servant P, de Groot A, Sommer S, Armengaud J (2013) Comparative proteomics reveals key proteins recruited at the nucleoid of Deinococcus after irradiation-induced DNA damage. Proteomics 13:3457–3469CrossRefPubMedGoogle Scholar
  7. Devigne A, Mersaoui S, de la Tour CB, Sommer S, Servant P (2013) The PprA protein is required for accurate cell division of γ-irradiated Deinococcus radiodurans bacteria. DNA Repair 12:265–272CrossRefPubMedGoogle Scholar
  8. Espeli O, Levine C, Hassing H, Marians KJ (2003) Temporal regulation of topoisomerase IV activity in E. coli. Mol Cell 11:189–201CrossRefPubMedGoogle Scholar
  9. Hiasa H, DiGate RJ, Marians KJ (1994) Decatenating activity of Escherichia coli DNA gyrase and topoisomerases I and III during oriC and pBR322 DNA replication in vitro. J Biol Chem 269:2093–2099PubMedGoogle Scholar
  10. Ishino Y, Narumi I (2015) DNA repair in hyperthermophilic and hyperradioresistant microorganisms. Curr Opin Microbiol 25:103–112CrossRefPubMedGoogle Scholar
  11. Kang S, Han J-S, Park J-H, Skarstad K, Hwang D-S (2003) SeqA protein stimulates the relaxing and decatenating activities of Topoisomerase IV. J Biol Chem 278:48779–48785CrossRefPubMedGoogle Scholar
  12. Karimova G, Pidoux J, Ullmann A, Ladant D (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA 95:5752–5756PubMedCentralCrossRefPubMedGoogle Scholar
  13. Karkare S, Yousafzai F, Mitchenall LA, Maxwell A (2012) The role of Ca2+ in the activity of Mycobacterium tuberculosis DNA gyrase. Nucleic Acids Res 40:9774–9787PubMedCentralCrossRefPubMedGoogle Scholar
  14. Kitayama S, Asaka S, Totsuka K (1983) DNA double –strand breakage and removal of Cross-Links in Deinococcus radiodurans. J Bact 155:1200–1207PubMedCentralPubMedGoogle Scholar
  15. Kota S, Misra HS (2006) PprA: a protein implicated in radioresistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli. Appl Microbiol Biotechnol 72:790–796CrossRefPubMedGoogle Scholar
  16. Kota S, Misra HS (2008) Identification of DNA processing complex from a radioresistant bacterium, Deinococcus radiodurans. Biochem Cell Biol 86:448–458CrossRefPubMedGoogle Scholar
  17. Kota S, Kamble VA, Rajpurohit YS, Misra HS (2010) ATP-type DNA ligase requires other proteins for its activity in vitro and its operon components for radiation resistance in Deinococcus radiodurans in vivo. Biochem Cell Biol 88:783–790CrossRefPubMedGoogle Scholar
  18. Kota S, Charaka VK, Misra HS (2014a) PprA shows growth dependent dynamics in cellular localization during post irradiation recovery of Deinococcus radiodurans. J Genet 93:349–354CrossRefPubMedGoogle Scholar
  19. Kota S, Charaka VK, Ringgaard S, Waldor MK, Misra HS (2014b) PprA contributes to Deinococcus radiodurans resistance to nalidixic acid, genome maintenance after DNA damage and interacts with deinococcal topoisomerases. PLoS One 9:e285288CrossRefGoogle Scholar
  20. Krisko A, and Radman M (2013) Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol. doi:10.1101Google Scholar
  21. Levin-Zaidman S, Englander J, Shimoni E, Sharma AK, Minton KW, Minsky A (2003) Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299:254–256CrossRefPubMedGoogle Scholar
  22. Lopez V, Martínez-Robles M-L, Hernández P, Krimer DB, Schvartzman JB (2012) Topo IV is the topoisomerase that knots and unknots sister duplexes during DNA replication. Nucleic Acid Res 40:3563–3573PubMedCentralCrossRefPubMedGoogle Scholar
  23. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ (2001) Genome of extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspectives of comparative genomics. Microbiol Mol Biol Rev 65:44–79PubMedCentralCrossRefPubMedGoogle Scholar
  24. Manjunatha UH, Dalal M, Chatterji M, Radha DR, Visweswariah SS, Nagaraja V (2002) Functional characterisation of mycobacterial DNA gyrase: an efficient decatenase. Nucleic Acid Res 30(10):2144–2153PubMedCentralCrossRefPubMedGoogle Scholar
  25. Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15CrossRefPubMedGoogle Scholar
  26. Misra HS, Rajpurohit YS, Kota S (2013) Physiological and molecular basis of extreme radioresistance in Deinococcus radiodurans. Curr Sci 104:194–205Google Scholar
  27. Modi K, Misra HS (2014) Dr-FtsA, an actin homologue in Deinococcus radiodurans differentially affects Dr-FtsZ and Ec-FtsZ functions in vitro. PLoS One 9:e115918PubMedCentralCrossRefPubMedGoogle Scholar
  28. Montero C, Mateu G, Rodriguez R, Takiff H (2001) Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA. Antimicrob Agents Chemother 45:3387–3392PubMedCentralCrossRefPubMedGoogle Scholar
  29. Nakanishi A, Oshida T, Matsushita T, Imajoh-Ohmi S, Ohnuki T (1998) Identification of DNA gyrase inhibitor (GyrI) in Escherichia coli. J Biol Chem 273:1933–1938CrossRefPubMedGoogle Scholar
  30. Narumi I, Satoh K, Cui S, Funayama T, Kitayama S, Watanabe H (2004) PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 54:278–285CrossRefPubMedGoogle Scholar
  31. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  32. Satoh K, Wada S, Kikuchi M, Funayama T, Narumi I, Kobayashi Y (2006) Method for detecting DNA strand breaks in mammalian cells using the Deinococcus radiodurans PprA protein. Mutat Res 596:36–42CrossRefPubMedGoogle Scholar
  33. Schaefer M, Schmitz C, Facius R, Horneck G, Milow B, Funken K-H, Ortner J (2000) Systematic study of parameters influencing the action of Rose Bengal with visible light on bacterial cells: comparison between biological effect and singlet-oxygen production. Photochem Photobiol 71:514–523CrossRefGoogle Scholar
  34. Sengupta S, Nagaraja V (2008) Inhibition of DNA gyrase activity by Mycobacterium smegmatis MurI. FEMS Microbiol Lett 279:40–47CrossRefPubMedGoogle Scholar
  35. Sengupta S, Shah M, Nagaraja V (2006) Glutamate racemase from Mycobacterium tuberculosis inhibits DNA gyrase by affecting its DNA-binding. Nucleic Acid Res 34:5567–5576PubMedCentralCrossRefPubMedGoogle Scholar
  36. Shah S, Heddle JG (2014) Squaring up to DNA: pentapeptide repeat proteins and DNA mimicry. Appl Microbiol Biotech 98:9545–9560CrossRefGoogle Scholar
  37. Tian B, Hua Y (2010) Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria. Trends Microbiol 18:512–520CrossRefPubMedGoogle Scholar
  38. White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC et al (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577PubMedCentralCrossRefPubMedGoogle Scholar
  39. Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M, Linder AB, Radman M (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573PubMedGoogle Scholar
  40. Zechiedrich EL, Khodursky AB, Cozzarelli NR (1997) Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev 11:2580–2592PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Swathi Kota
    • 1
  • Yogendra S. Rajpurohit
    • 1
  • Vijaya K. Charaka
    • 1
    • 4
  • Katsuya Satoh
    • 2
  • Issay Narumi
    • 3
  • Hari S. Misra
    • 1
    Email author
  1. 1.Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Ion Beam Mutagenesis Research Group, Quantum Beam Science CenterJapan Atomic Energy AgencyTakasakiJapan
  3. 3.Radiation Microbiology Laboratory, Department of Life SciencesToyo UniversityItakuraJapan
  4. 4.Department of Radiation Oncology, Houston Methodist Research InstituteHouston Methodist HospitalHoustonUSA

Personalised recommendations