Advertisement

Extremophiles

, Volume 20, Issue 3, pp 261–274 | Cite as

Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine

  • Ross P. CarlsonEmail author
  • Olusegun Oshota
  • Matt Shipman
  • Justin A. Caserta
  • Ping Hu
  • Charles W. Saunders
  • Jun Xu
  • Zackary J. Jay
  • Nancy Reeder
  • Abigail Richards
  • Charles Pettigrew
  • Brent M. PeytonEmail author
Original Paper

Abstract

Two haloalkaliphilic bacteria isolated from industrial brine solutions were characterized via molecular, physiological, and in silico metabolic pathway analyses. Genomes from the organisms, designated Halomonas BC1 and BC2, were sequenced; 16S ribosomal subunit-based phylogenetic analysis revealed a high level of similarity to each other and to Halomonas meridiana. Both strains were moderate halophiles with near optimal specific growth rates (≥60 % μ max) observed over <0.1–5 % (w/v) NaCl and pH ranging from 7.4 to 10.2. Isolate BC1 was further characterized by measuring uptake or synthesis of compatible solutes under different growth conditions; in complex medium, uptake and accumulation of external glycine betaine was observed while ectoine was synthesized de novo in salts medium. Transcriptome analysis of isolate BC1 grown on glucose or citrate medium measured differences in glycolysis- and gluconeogenesis-based metabolisms, respectively. The annotated BC1 genome was used to build an in silico, genome-scale stoichiometric metabolic model to study catabolic energy strategies and compatible solute synthesis under gradients of oxygen and nutrient availability. The theoretical analysis identified energy metabolism challenges associated with acclimation to high salinity and high pH. The study documents central metabolism data for the industrially and scientifically important haloalkaliphile genus Halomonas.

Keywords

Halophile Halomonas Brine Compatible solute Systems biology 

Notes

Acknowledgments

The authors are grateful for the financial assistance of Procter and Gamble, Inc. and appreciate the contributions of Adam Kennedy and colleagues at Metabolon, Inc. The authors would also like to thank Ryan Jennings, Ashley Beck and Kristopher Hunt for critical reading of the manuscript and 16S rRNA analysis.

Supplementary material

792_2015_806_MOESM1_ESM.xlsx (1.4 mb)
Supplementary material 1 (XLSX 1481 kb)

References

  1. Aston JE, Peyton BM (2007) Response of Halomonas campisalis to saline stress: changes in growth kinetics, compatible solute production and membrane phospholipid fatty acid composition. FEMS Microbiol Lett 274:196–203CrossRefPubMedGoogle Scholar
  2. Ates O, Oner ET, Arga KY (2011) Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043. BMC Syst Biol 5:12CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beck A, Hunt KA, Bernstein HC, Carlson RP (2016) Interpreting and designing microbial communities for bioprocess applications, from components to interactions to emergent properties. Biotechnol Biofuel Prod Optim 1:407–432CrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300Google Scholar
  5. Biegel E, Schmidt S, González JM, Müller V (2011) Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68:613–634CrossRefPubMedGoogle Scholar
  6. Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378PubMedPubMedCentralGoogle Scholar
  7. Bott M (1997) Anaerobic citrate metabolism and its regulation in enterobacteria. Arch Microbiol 167:78–88CrossRefGoogle Scholar
  8. Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846PubMedPubMedCentralGoogle Scholar
  9. Bursy J, Pierik AJ, Pica N, Bremer E (2007) Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem 282:31147–31155CrossRefPubMedGoogle Scholar
  10. Carlson RP (2007) Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics 23:1258–1264CrossRefPubMedGoogle Scholar
  11. Carlson RP (2009) Decomposition of complex microbial behaviors into resource-based stress responses. Bioinformatics 25:90–97CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carlson RP, Taffs RL (2010) Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors. Curr Opin Biotechnol 21:670–676CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carlson R, Wlaschin A, Srienc F (2005) Kinetic studies and biochemical pathway analysis of anaerobic poly-(R)-3-hydroxybutyric acid synthesis in Escherichia coli. Appl Environ Microbiol 71:713–720CrossRefPubMedPubMedCentralGoogle Scholar
  14. Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dimroth P, Jockel P, Schmid M (2001) Coupling mechanism of the oxaloacetate decarboxylase Na+ pump. BBA Bioenerg 1505:1–14CrossRefGoogle Scholar
  16. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81:6656–6667CrossRefPubMedGoogle Scholar
  17. Folsom JP, Parker AE, Carlson RP (2014) Physiological and proteomic analysis of Escherichia coli iron-limited chemostat growth. J Bacteriol 196:2748–2761CrossRefPubMedPubMedCentralGoogle Scholar
  18. Giordano A, Vella FM, Romano I, Gambacorta A (2007) Structural elucidation of a novel phosphoglycolipid isolated from six species of Halomonas. J Lipid Res 48:1825–1831CrossRefPubMedGoogle Scholar
  19. Goto T, Matsuno T, Hishinuma-Narisawa M, Yamazaki K, Matsuyama H, Inoue N, Yumoto I (2005) Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp. J Biosci Bioeng 100:365–379CrossRefPubMedGoogle Scholar
  20. Grammann K, Volke A, Kunte HJ (2002) New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. J Bacteriol 184:3078–3085CrossRefPubMedPubMedCentralGoogle Scholar
  21. Grant WD (2004) Life at low water activity. Philos Trans R Soc B 359:1249–1266CrossRefGoogle Scholar
  22. Guzman H, Van-Thuoc D, Martin J, Hatti-Kaul R, Quillaguaman J (2009) A process for the production of ectoine and poly(3-hydroxybutyrate) by Halomonas boliviensis. Appl Microbiol Biotechnol 84:1069–1077CrossRefPubMedGoogle Scholar
  23. Halverson LJ, Jones TM, Firestone MK (2000) Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Sci Soc Am J 64:1630–1637CrossRefGoogle Scholar
  24. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedPubMedCentralGoogle Scholar
  25. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330CrossRefPubMedGoogle Scholar
  26. Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126CrossRefGoogle Scholar
  27. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1:2CrossRefPubMedPubMedCentralGoogle Scholar
  28. Krulwich TA, Ito M, Gilmour R, Sturr MG, Guffanti AA, Hicks DB (1996) Energetic problems of extremely alkaliphilic aerobes. BBA Bioenerg 1275:21–26CrossRefGoogle Scholar
  29. Kuhlmann SI, Terwisscha van Scheltinga AC, Bienert R, Kunte HJ, Ziegler C (2008) 1.55 Å structure of the ectoine binding protein TeaA of the osmoregulated TRAP-transporter TeaABC from Halomonas elongata. Biochemistry 47:9475–9485CrossRefPubMedGoogle Scholar
  30. Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 317–368Google Scholar
  31. Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. Halophilic Bact 1:109–140Google Scholar
  32. Mothes G, Schubert T, Harms H, Maskow T (2008) Biotechnological coproduction of compatible solutes and polyhydroxyalkanoates using the genus Halomonas. Eng Life Sci 8:658–662CrossRefGoogle Scholar
  33. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates, Sunderland, MAGoogle Scholar
  34. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedPubMedCentralGoogle Scholar
  35. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2CrossRefPubMedPubMedCentralGoogle Scholar
  36. Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923CrossRefPubMedGoogle Scholar
  37. Pade N, Köcher S, Roessler M, Hänelt I, Müller V (2013) Bioenergetics of the moderately halophilic bacterium Halobacillus halophilus: composition and regulation of the respiratory chain. Appl Environ Microbiol 79:3839–3846CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pastor JM, Bernal V, Salvador M, Argandona M, Vargas C, Csonka L, Sevilla A, Iborra JL, Nieto JJ, Canovas M (2013) Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. J Biol Chem 288:17769–17781CrossRefPubMedPubMedCentralGoogle Scholar
  39. Petersen J, Forster K, Turina P, Graber P (2012) Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast. PNAS 109:11150–11155CrossRefPubMedPubMedCentralGoogle Scholar
  40. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5CrossRefPubMedPubMedCentralGoogle Scholar
  41. Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2:165–182CrossRefGoogle Scholar
  42. Schuster R, Schuster S (1993) Refined algorithm and computer program for calculating all non-negative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed. Bioinformatics 9:79–85CrossRefGoogle Scholar
  43. Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332CrossRefPubMedGoogle Scholar
  44. Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H, Rampp M, Schuster SC, Klenk HP, Pfeiffer F, Oesterhelt D, Kunte HJ (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581. Environ Microbiol 13:1973–1994CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sherwood JE, Stagnitti F, Kokkinn MJ, Williams WD (1991) Dissolved-oxygen concentrations in hypersaline waters. Limnol Oceanogr 36:235–250CrossRefGoogle Scholar
  46. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:3Google Scholar
  47. Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420CrossRefGoogle Scholar
  48. Steigmiller S, Turina P, Graeber P (2008) The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli. PNAS 105:3745–3750CrossRefPubMedPubMedCentralGoogle Scholar
  49. Steuber J, Schmid C, Rufibach M, Dimroth P (2000) Na+ translocation by complex I (NADH:quinone oxidoreductase) of Escherichia coli. Mol Microbiol 35:428–434CrossRefPubMedGoogle Scholar
  50. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  51. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  52. Trinh CT, Wlaschin A, Srienc F (2009) Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 81:813–826CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedPubMedCentralGoogle Scholar
  54. Verkhovsky MI, Bogachev AV (2010) Sodium-translocating NADH: quinone oxidoreductase as a redox-driven ion pump. BBA 1797:738–746PubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Ross P. Carlson
    • 1
    • 2
    Email author
  • Olusegun Oshota
    • 1
    • 4
  • Matt Shipman
    • 1
    • 5
  • Justin A. Caserta
    • 3
  • Ping Hu
    • 3
  • Charles W. Saunders
    • 3
  • Jun Xu
    • 3
  • Zackary J. Jay
    • 1
    • 2
  • Nancy Reeder
    • 3
  • Abigail Richards
    • 1
    • 2
  • Charles Pettigrew
    • 3
  • Brent M. Peyton
    • 1
    • 2
    Email author
  1. 1.Department of Chemical and Biological EngineeringMontana State UniversityBozemanUSA
  2. 2.Center for Biofilm EngineeringMontana State UniversityBozemanUSA
  3. 3.Procter and Gamble Co.CincinnatiUSA
  4. 4.Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
  5. 5.U.S. NavyWashingtonUSA

Personalised recommendations