Advertisement

Extremophiles

, Volume 20, Issue 2, pp 125–138 | Cite as

Prokaryotic diversity in a Tunisian hypersaline lake, Chott El Jerid

  • Manel Ben Abdallah
  • Fatma Karray
  • Najla Mhiri
  • Nan Mei
  • Marianne Quéméneur
  • Jean-Luc Cayol
  • Gaël Erauso
  • Jean-Luc Tholozan
  • Didier Alazard
  • Sami Sayadi
Original Paper

Abstract

Prokaryotic diversity was investigated in a Tunisian salt lake, Chott El Jerid, by quantitative real-time PCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting methods targeting the 16S rRNA gene and culture-dependent methods. Two different samples S1-10 and S2-10 were taken from under the salt crust of Chott El Jerid in the dry season. DGGE analysis revealed that bacterial sequences were related to Firmicutes, Proteobacteria, unclassified bacteria, and Deinococcus-Thermus phyla. Anaerobic fermentative and sulfate-reducing bacteria were also detected in this ecosystem. Within the domain archaea, all sequences were affiliated to Euryarchaeota phylum. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of bacteria was 5 × 106 DNA copies g−1 whereas archaea varied between 5 × 105 and 106 DNA copies g−1 in these samples. Eight anaerobic halophilic fermentative bacterial strains were isolated and affiliated with the species Halanaerobium alcaliphilum, Halanaerobium saccharolyticum, and Sporohalobacter salinus. These data showed an abundant and diverse microbial community detected in the hypersaline thalassohaline environment of Chott El Jerid.

Keywords

Archaea Bacteria Microbial diversity Hypersaline lake 16S rRNA PCR-DGGE Quantitative PCR Anaerobic fermentative bacteria 

Notes

Acknowledgments

MBA was supported by the Tunisian Ministry of Higher Education, Scientific Research and Technology fellowship. This work was published with the support of AIRD (JEAI HALOBIOTECH project “Traitement anaérobie des effluents industriels salins et hypersalins par des bioréacteurs membranaires”).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E (2008) Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12:505–518. doi: 10.1007/s00792-008-0154-x CrossRefPubMedGoogle Scholar
  3. Baati H, Guermazi S, Gharsallah N, Sghir A, Ammar E (2010) Novel prokaryotic diversity in sediments of Tunisian multipond solar saltern. Res Microbiol 161:573–582. doi: 10.1016/j.resmic.2010.05.009 CrossRefPubMedGoogle Scholar
  4. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedCentralPubMedGoogle Scholar
  5. Ben Abdallah M, Karray F, Mhiri N, Cayol JL, Tholozan JL, Alazard D, Sayadi S (2015) Characterization of Sporohalobacter salinus sp. nov., an anaerobic, halophilic, fermentative bacterium isolated from a hypersaline lake. Int J Syst Evol Microbiol 65:543–548. doi: 10.1099/ijs.0.066845-0 CrossRefPubMedGoogle Scholar
  6. Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127. doi: 10.1016/0022-2836(81)90508-8 CrossRefPubMedGoogle Scholar
  7. Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348. doi: 10.1046/j.1462-2920.2002.00297.x CrossRefPubMedGoogle Scholar
  8. Cayol JL, Ollivier B, Lawson A, Soh ALS, Fardeau ML, Ageron E, Grimont PAD, Prensier G, Guezennec J, Magot M, Garcia JL (1994) Haloincola saccharolytica subsp. senegalensis subsp. nov., isolated from the sediments of a hypersaline lake, and emended description of Haloincola saccharolytica. Int J Syst Bacteriol 44:805–811. doi: 10.1099/00207713-44-4-805 CrossRefGoogle Scholar
  9. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal Database Project: improved alignements and new tools for rRNA analysis. Nucleic Acids Res 37:141–145. doi: 10.1093/nar/gkn879 CrossRefGoogle Scholar
  10. DeLong EF (1992) Archaea in costal marine environments. Proc Natl Acad Sci USA 89:5685–5689. doi: 10.1073/pnas.89.12.5685 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio–temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504. doi: 10.1007/s00792-008-0153-y CrossRefPubMedGoogle Scholar
  12. Dong H, Zhang G, Jiang H, Yu B, Chapman LR, Lucas CR, Fields MW (2006) Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology. Microb Ecol 51:65–82. doi: 10.1007/s00248-005-0228-6 CrossRefPubMedGoogle Scholar
  13. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Emmerich M, Bhansali A, Lösekann-Behrens T, Schröder C, Kappler A, Behrens S (2012) Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia. Appl Environ Microbiol 78:4386–4399. doi: 10.1128/AEM.07637-11 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Foti MJ, Sorokin DY, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2008) Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai, Russia). Extremophiles 12:133–145. doi: 10.1007/s00792-007-0117-7 CrossRefPubMedGoogle Scholar
  16. Großkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969PubMedCentralPubMedGoogle Scholar
  17. Hedi A, Fardeau ML, Sadfi N, Boudabous A, Ollivier B, Cayol JL (2009) Characterization of Halanaerobaculum tunisiense gen. nov., sp. nov., a new halophilic fermentative, strictly anaerobic bacterium isolated from a hypersaline lake in Tunisia. Extremophiles 13:313–319. doi: 10.1007/s00792-008-0218-y CrossRefPubMedGoogle Scholar
  18. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132CrossRefGoogle Scholar
  19. Kbir-Ariguib N, Ben Hassan Chehimi D, Zayani L (2001) Treatment of Tunisian salt lakes using solubility phase diagrams. Pure Appl Chem 73:761–770CrossRefGoogle Scholar
  20. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acids techniques in bacterial systematics. Wiley, Chichester, pp 115–147Google Scholar
  21. Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B, Pašić L, Ventosa A (2012) Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. Microbes Environ 27:87–93. doi: 10.1264/jsme2.ME11267 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895. doi: 10.1128/AEM.02214-05 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Mezghani M, Alazard D, Karray F, Cayol JL, Joseph M, Postec A, Fardeau ML, Tholozan JL, Sayadi S (2012) Halanaerobacter jeridensis sp. nov., isolated from a hypersaline lake. Int J Syst Evol Microbiol 62:1970–1973. doi: 10.1099/ijs.0.036301-0 CrossRefPubMedGoogle Scholar
  24. Mouné S, Caumette P, Matheron R, Willison JC (2003) Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44:117–130. doi: 10.1016/S0168-6496(03)00017-5 CrossRefPubMedGoogle Scholar
  25. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedCentralPubMedGoogle Scholar
  26. Nadkarni MA, Elizabeth Martin F, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiol 148:257–266. doi: 10.1099/00221287-148-1-257 CrossRefGoogle Scholar
  27. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology and applications. J Ind Microbiol Bitechnol 28:56–63. doi: 10.1038/sj/jim/7000176 CrossRefGoogle Scholar
  28. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834. doi: 10.1080/09593330903370026 CrossRefPubMedGoogle Scholar
  29. Ori GG, Pascucci V, Gasmi N, Barbieri R (2009) Tunisian desert: a perfect place to simulate the landing on mars. In: 27th IAS meeting of sedimentology- field trips guide book, SASSARI, EDES, pp 315–342Google Scholar
  30. Ruff-Roberts AL, Kuenen JG, Ward DM (1994) Distribution of cultivated and uncultivated cyanobacteria and chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 60:697–704PubMedCentralPubMedGoogle Scholar
  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Tsai CR, Garcia JL, Patel BKC, Cayol JL, Baresi L, Mah RA (1995) Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake, Utah. Int J Syst Evol Microbiol 45:301–307. doi: 10.1099/00207713-45-2-301 Google Scholar
  33. Ventosa A, Mellado E, Sanchez-Porro C, Marquez MC (2008) Halophilic and halotolerant micro-organisms from soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin, pp 87–115. doi:  10.1007/978-3-540-74231-9_5
  34. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703PubMedCentralPubMedGoogle Scholar
  35. Wright ES, Safak Yilmaz L, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725. doi: 10.1128/AEM.06516-11 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Manel Ben Abdallah
    • 1
    • 2
  • Fatma Karray
    • 1
    • 3
  • Najla Mhiri
    • 1
    • 3
  • Nan Mei
    • 2
  • Marianne Quéméneur
    • 2
  • Jean-Luc Cayol
    • 2
  • Gaël Erauso
    • 2
    • 3
  • Jean-Luc Tholozan
    • 2
  • Didier Alazard
    • 1
    • 2
  • Sami Sayadi
    • 1
    • 3
  1. 1.Laboratory of Environmental Bioprocesses, Centre of Biotechnology of SfaxUniversity of SfaxSfaxTunisia
  2. 2.IRD, University of Aix-Marseille, University of Toulon, CNRS, MIO, UM 110Marseille Cedex 09France
  3. 3.Laboratoire Mixte International « Contaminants et Ecosystèmes Marins Sud Méditerranéens » (LMI COSYS-Med)SfaxTunisia

Personalised recommendations