, Volume 20, Issue 1, pp 27–36 | Cite as

Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii

  • Qiuzi Qi
  • Yoshiyasu Ito
  • Katsuhiko Yoshimatsu
  • Taketomo Fujiwara
Original Paper


The halophilic euryarchaeon Haloferax volcanii can grow anaerobically by DMSO respiration. DMSO reductase was induced by DMSO respiration not only under anaerobic growth conditions but also in denitrifying cells of H. volcanii. Deletion of the dmsR gene, encoding a putative regulator for the DMSO reductase, resulted in the loss of anaerobic growth by DMSO respiration. Reporter experiments revealed that only the anaerobic condition was essential for transcription of the dmsEABCD genes encoding DMSO reductase and that transcription was enhanced threefold by supplementation of DMSO. In the ∆dmsR mutant, transcription of the dmsEABCD genes induced by the anaerobic condition was not enhanced by DMSO, suggesting that DmsR is a DMSO-responsive regulator. Transcriptions of the dmsR and mgd genes for Mo-bisMGD biosynthesis were regulated in the same manner as the dmsEABCD genes. These results suggest that the genetic regulation of DMSO respiration in H. volcanii is controlled by at least two systems: one is the DMSO-responsive DmsR, and the other is an unknown anaerobic regulator.


Haloferax volcanii DMSO reductase Anaerobic respiration DmsR Transcription regulator 



Analysis of variance


Halophilic β-galactosidase


Dimethyl sulfoxide


Dimethyl sulfide


Bis-molybdopterin guanine dinucleotide




Methyl viologen


Open reading frame


Orotate:phosphoribosyl transferase



This work was supported by the research grants from the Japan Space Forum (Exploratory Research for Space Utilization) to TF.

Supplementary material

792_2015_794_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1126 kb)


  1. Allers T, Ngo HP, Mevarech M, Lloyd RG (2004) Development of additional selectable markers for the halophilic archaeon Haloferax volcanii based on the leuB and trpA genes. Appl Environ Microbiol 70:943–953PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andreae MO, Andreae TW, Meyerdierks D, Thiel C (2003) Marine sulfur cycling and the atmospheric aerosol over the springtime North Atlantic. Chemosphere 52:1321–1343PubMedCrossRefGoogle Scholar
  3. Bearson SMD, Albrecht JA and Gunsalus RP (2002) Oxygen and nitrate-dependent regulation of dmsABC operon expression in Escherichia coli: sites for Fnr and NarL protein interactions. BMC Microbiology (http://www.biomedcentral.com/1471-2180/2/13)
  4. Cotter PA, Gunsalus RP (1989) Oxygen, nitrate, and molybdenum regulation of dmsABC gene expression in Escherichia coli. J Bacteriol 171:3817–3823PubMedPubMedCentralGoogle Scholar
  5. DasSarma P, Zamora RC, Müller JA, DasSarma S (2012) Genome-wide responses of the model archaeon Halobacterium sp. strain NRC-1 to oxygen limitation. J Bacteriol 194:5530–5537PubMedPubMedCentralCrossRefGoogle Scholar
  6. Dibden DP, Green J (2005) In vivo cycling of the Escherichia coli transcription factor FNR between active and inactive states. Micobiol 151:4063–4070Google Scholar
  7. Dyall-Smith M (2009) The Halohandbook: Protocols for Halobacterial Genetics. V.7.1. (http://www.haloarchaea.com/resources/halohandbook/, p79)
  8. Goh EB, Bledsoe PJ, Chen LL, Gyaneshwar P, Stewart V, Igo MM (2005) Hierarchical control of anaerobic gene expression in Escherichia coli K-12: the nitrate-responsive NarX-NarL regulatory system represses synthesis of the fumarate-responsive DcuS-DcuR regulatory system. J Bacteriol 187:4890–4899PubMedPubMedCentralCrossRefGoogle Scholar
  9. Gregor D, Pfeifer F (2001) Use of a halobacterial bgaH reporter gene to analyse the regulation of gene expression in halophilic archaea. Microbiol 147:1745–1754CrossRefGoogle Scholar
  10. Hartig E, Schiek U, Vollack KU, Zumft WG (1999) Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli. J Bacteriol 181:3658–3665PubMedPubMedCentralGoogle Scholar
  11. Hartman AL, Norais C, Badger JH, Delmas S, Haldenby S, Ramana M, Jeffrey R, Hoda K, Qinghu R, Todd ML, Julie MF, Mecky P, Charles D, Friedhelm P, Thorsten A, Jonathan AE (2010) The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS ONE 5:e9605PubMedPubMedCentralCrossRefGoogle Scholar
  12. Holmes M, Pfeifer F, Dyall-Smith M (1994) Improved shuttle vectors for Haloferax volcanii including a dual-resistance plasmid. Gene 146:171–172CrossRefGoogle Scholar
  13. Juty NS, Moshiri F, Merrick M, Anthony C, Hill S (1997) The Klebsiella pneumoniae cytochrome bd terminal oxidase complex and its role in microaerobic nitrogen fixation. Microbiol 143:2673–2683CrossRefGoogle Scholar
  14. Kiley PJ, Beinert H (1998) Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol Rev 22:341–352PubMedCrossRefGoogle Scholar
  15. Matsuzaki M, Kiso Y, Yamamoto I, Satoh T (1998) Isolation of a periplasmic molecular chaperone-like protein of Rhodobacter sphaeroides f. sp. denitrificans that is homologous to the dipeptide transport protein DppA of Escherichia coli. J Bacteriol 180:2718–2722PubMedPubMedCentralGoogle Scholar
  16. McNicholas PM, Chiang RC, Gunsalus RP (1998) Anaerobic regulation of the Escherichia coli dmsABC operon requires the molybdate-responsive regulator ModE. Mol Microbiol 27:197–208PubMedCrossRefGoogle Scholar
  17. Moore MD, Kaplan S (1989) Construction of tnphoA gene fusions in Rhodobacter sphaeroides: isolation and characterization of a respiratory mutant unable to utilize dimethyl sulfoxide as a terminal electron acceptor during anaerobic growth in the dark on Glucose. J Bacteriol 171:4385–4394PubMedPubMedCentralGoogle Scholar
  18. Mouncey NJ, Kaplan S (1998a) Cascade regulation of dimethyl sulfoxide reductase (dor) gene expression in the facultative phototroph Rhodobacter sphaeroides 2.4.1T. J Bacteriol 180:2924–2930PubMedPubMedCentralGoogle Scholar
  19. Mouncey NJ, Kaplan S (1998b) Redox-dependent gene regulation in Rhodobacter sphaeroides 2.4.1T: Effects on dimethyl sulfoxide reductase (dor) gene expression. J Bacteriol 180:5612–5618PubMedPubMedCentralGoogle Scholar
  20. Mouncey NJ, Choudhary M, Kaplan S (1997) Characterization of genes encoding dimethyl sulfoxide reductase of Rhodobacter sphaeroides 2.4.1T: an essential metabolic gene function encoded on chromosome II. J Bacteriol 179:7617–7624PubMedPubMedCentralGoogle Scholar
  21. Mullakhanbhai MF, Larsen H (1975) Halobacterium volcanii spec. nov., a dead sea halobacterium with a moderate salt requirement. Arch Microbiol 104:207–214PubMedCrossRefGoogle Scholar
  22. Müller JA, DasSarma S (2005) Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. Strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. J Bacteriol 187:1659–1667PubMedPubMedCentralCrossRefGoogle Scholar
  23. Oren A (1991) Anaerobic growth of halophilic archaeobacteria by reduction of fumarate. J Gen Microbiol 137:1387–1390CrossRefGoogle Scholar
  24. Oren A (2002) Cellular metabolism and physiology of halophilic microorganisms. Halophilic Microorganisms and their Environments. Kluwer Academic Publishers, Dordrecht, pp 125–145CrossRefGoogle Scholar
  25. Oren A, Trüper HG (1990) Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsulfoxide and trimethylamine N-oxide. Microbiol 70:33–36Google Scholar
  26. Reschke S, Sigfridsson KG, Kaufmann P, Leidel N, Horn S, Gast K, Schulzke C, Haumann M, Leimkühler S (2013) Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in Escherichia coli. J Biol Chem 288:29736–29745PubMedPubMedCentralCrossRefGoogle Scholar
  27. Sambasivarao D, Weiner JH (1991) Dimethyl sulfoxide reductase of Escherichia coli: an investigation of function and assembly by use of in vivo complementation. J Bacteriol 173:5935–5943PubMedPubMedCentralGoogle Scholar
  28. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  29. Soppa J (2011) Functional genomic and advanced genetic studies reveal novel insights into the metabolism, regulation, and biology of Haloferax volcanii. Archaea 2011:602408PubMedPubMedCentralCrossRefGoogle Scholar
  30. Stevenson CEM, Sargent F, Buchanan G, Palmer T, Lawson DM (2000) Crystal structure of the molybdenum cofactor biosynthesis protein mobA from Escherichia coli at near-atomic resolution. Structure 8:1115–1125PubMedCrossRefGoogle Scholar
  31. Turner RJ, Busaan JL, Lee JH, Michalak M, Weiner JH (1997) Expression and epitope tagging of the membrane anchor subunit (DmsC) of Escherichia coli dimethyl sulfoxide reductase. Protein Eng 10:285–290PubMedCrossRefGoogle Scholar
  32. Vogt C, Rabenstein A, Rethmeier J, Fischer U (1997) Dimethyl sulphoxide reduction with reduced sulphur compounds as electron donors by anoxygenic phototrophic bacteria. Microbiol 143:767–773CrossRefGoogle Scholar
  33. Yamamoto I, Wada N, Ujiye T, Tachibana M, Matsuzaki M, Kajiwara H, Watanabe Y, Hirano H, Okubo A, Satoh T, Yamazaki S (1995) Cloning and nucleotide sequence of the gene encoding dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans. Biosci Biotech Biochem 59:1850–1855CrossRefGoogle Scholar
  34. Yoshimatsu K, Sakurai T, Fujiwara T (2000) Purification and characterization of dissimilatory nitrate reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. FEBS Lett 470:216–220PubMedCrossRefGoogle Scholar
  35. Yu L, Wolin MJ (1969) Hydrogenase measurement with photochemically reduced methyl viologen. J Bacteriol 98:51–55PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Qiuzi Qi
    • 1
  • Yoshiyasu Ito
    • 2
  • Katsuhiko Yoshimatsu
    • 3
  • Taketomo Fujiwara
    • 1
    • 2
  1. 1.Department of Environment and Energy Systems, Graduate School of Science and TechnologyShizuoka UniversityShizuokaJapan
  2. 2.Department of Biological Science, Faculty of ScienceShizuoka UniversityShizuokaJapan
  3. 3.Research Institute of Green Science and TechnologyShizuoka UniversityShizuokaJapan

Personalised recommendations