Advertisement

Extremophiles

, Volume 19, Issue 6, pp 1183–1192 | Cite as

Structural characterization of amphiphilic siderophores produced by a soda lake isolate, Halomonas sp. SL01, reveals cysteine-, phenylalanine- and proline-containing head groups

  • Luis O’mar Serrano FigueroaEmail author
  • Benjamin Schwarz
  • Abigail M. Richards
Original Paper

Abstract

Soap Lake, located in Washington State, is a naturally occurring saline and alkaline lake. Several organisms inhabiting this lake have been identified as producers of siderophores that are unique in structure. Bacterial isolates, enriched from Soap Lake sediment and water samples, were screened for siderophore production using both the chrome azurol S (CAS) agar plate and liquid methods. Bacterial isolate Halomonas sp. SL01 was found to produce relatively high concentrations of siderophores in liquid medium (up to 40 µM). Siderophores from the isolate were separated from the culture supernatant using solid phase extraction and purified by high-performance liquid chromatography (HPLC). Siderophore structure was determined using LC/MS/MS (liquid chromatography/mass spectrometry/mass spectrometry) and fatty acid methyl ester (FAME) GC. Two distinct new families of amphiphilic siderophores were produced by isolate SL01. All siderophores ranged in size from 989 to 1096 atomic mass units and consisted of a conserved peptidic head group (per family), which coordinates iron, coupled to fatty acid moieties. The fatty acyl moieties were C10–C14 in length and some with hydroxyl substitutions at the third α position. These siderophores resembled amphiphilic aquachelin siderophores produced by Halomonas aquamarina strain DS40M3, a marine bacterium as well as siderophores from isolate Halomonas sp. SL28 that was found to produce amphiphilic siderophores. Bacteria thriving under saline and alkaline conditions are capable of producing unique siderophores resembling those produced by microbes inhabiting marine environments.

Keywords

Halomonas Amphiphilic siderophores Cysteine Phenylalanine Proline Halochelins 

Notes

Acknowledgments

Mass spectrometry data was done with the assistance of Dr. Jonathan Hilmer from the Mass Spectrometry Facility in the Department of Chemistry and Biochemistry, Montana State University-Bozeman. Special thanks to Ann Willis for HPLC support. Also thanks to Dr. Royce Wilkinson for assistance with the lyophilizer and to MIDI Labs, Inc. for the FAME and GC analysis. Funding was from the National Science Foundation (NSF) Grant Number EEC-0927109.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

792_2015_790_MOESM1_ESM.pdf (799 kb)
Supplementary material 1 (PDF 798 kb)

References

  1. Abergel RJ, Wilson MK, Arceneaux JEL, Hoette TM, Strong RK, Byers BR, Raymond KN (2006) Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci USA 103:18499–18503. doi: 10.1073/pnas.0607055103 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Amin SA, Green DH, Al Waheeb D, Gaerdes A, Carrano CJ (2012) Iron transport in the genus Marinobacter. Biometals 25:135–147. doi: 10.1007/s10534-011-9491-9 CrossRefPubMedGoogle Scholar
  3. Anderson I et al (2011) Novel insights into the diversity of catabolic metabolism from ten haloarchaeal genomes. PLoS One 6:12. doi: 10.1371/journal.pone.0020237 Google Scholar
  4. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237. doi: 10.1016/s0168-6445(03)00055-x CrossRefPubMedGoogle Scholar
  5. Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 102:11076–11081. doi: 10.1073/pnas.0504266102 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nat 413:409–413. doi: 10.1038/35096545 CrossRefGoogle Scholar
  7. Butler A, Theisen RM (2010) Iron(III)-siderophore coordination chemistry: reactivity of marine siderophores. Coord Chem Rev 254:288–296. doi: 10.1016/j.ccr.2009.09.010 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Conzonno VH, Ulibarrena J (2010) Hydrochemistry of Lakes of the Patagonian Province of Tierra del Fuego (Argentina). Env Earth Sci 59:1431–1436. doi: 10.1007/s12665-009-0129-y CrossRefGoogle Scholar
  9. Cox C, Rinehart K, Moore M, Cook J (1981) Pyochelin - Novel Structure of an Iron-Chelating Growth Promoter for Pseudomonas-Aeruginosa. Proc Natl Acad Sci USA-Biol Sci 78:4256–4260. doi: 10.1073/pnas.78.7.4256 CrossRefGoogle Scholar
  10. Crosa JH (2004) Iron transport in bacteria, 1st edn. ASM Press, Washington, DCCrossRefGoogle Scholar
  11. Dhungana S et al (2007) Purification and characterization of rhodobactin: a mixed ligand siderophore from Rhodococcus rhodochrous strain OFS. Biometals 20:853–867. doi: 10.1007/s10534-006-9079-y CrossRefPubMedGoogle Scholar
  12. Dirnitriu PA, Pinkart HC, Peyton BM, Mormile MR (2008) Spatial and temporal patterns in the microbial diversity of a meromictic soda lake in Washington State. Appl Env Microbiol 74:4877–4888. doi: 10.1128/aem.00455-08 CrossRefGoogle Scholar
  13. Duckworth OW, Holmstrom SJM, Pena J, Sposito G (2009) Biogeochemistry of iron oxidation in a circumneutral freshwater habitat. Chem Geol 260:149–158. doi: 10.1016/j.chemgeo.2008.08.027 CrossRefGoogle Scholar
  14. Edmondson WT, Anderson GC (1965) Some features of saline lakes in Central Washington. Limnol Oceanogr 10:R87–R96Google Scholar
  15. Emmerich M, Bhansali A, Loesekann-Behrens T, Schroeder C, Kappler A, Behrens S (2012) Abundance, distribution, and activity of fe(II)-oxidizing and fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, Southern Russia. Appl Env Microbiol 78:4386–4399. doi: 10.1128/aem.07637-11 CrossRefGoogle Scholar
  16. Gauglitz JM, Butler A (2013) Amino acid variability in the peptide composition of a suite of amphiphilic peptide siderophores from an open ocean Vibrio species. J Biol Inorg Chem 18:489–497. doi: 10.1007/s00775-013-0995-3 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Gauglitz JM, Zhou HJ, Butler A (2012) A suite of citrate-derived siderophores from a marine Vibrio species isolated following the Deepwater Horizon oil spill. J Inorg Biochem 107:90–95. doi: 10.1016/j.jinorgbio.2011.10.013 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Ghozlan H, Deif H, Abu Kandil R, Sabry S (2006) Biodiversity of moderately halophilic bacteria in hypersaline habitats in Egypt. J Gen Appl Microbiol 52:63–72. doi: 10.2323/jgam.52.63 CrossRefPubMedGoogle Scholar
  19. Heesemann J, Hantke K, Vocke T, Saken E, Rakin A, Stojiljkovic I, Berner R (1993) Virulence of yersinia-enterocolitica is closely associated with siderophore production, expression of an iron-repressible outer-membrane polypeptide of 65000 da and pesticin sensitivity. Molec Microbiol 8:397–408. doi: 10.1111/j.1365-2958.1993.tb01583.x CrossRefGoogle Scholar
  20. Homann V, Edwards K, Webb E, Butler A (2009a) Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives. Biometals 22:565–571. doi: 10.1007/s10534-009-9237-0 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Homann V, Sandy M, Tincu J, Templeton A, Tebo B, Butler A (2009b) Loihichelins A-F, a Suite of Amphiphilic Siderophores Produced by the Marine Bacterium Halomonas LOB-5. J Nat Prod 72:884–888. doi: 10.1021/np800640h PubMedCentralCrossRefPubMedGoogle Scholar
  22. Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp PCC 7002. Limnol Oceanogr 50:1918–1923CrossRefGoogle Scholar
  23. Karatayev AY, Burlakova LE, Dodson SI (2008) Community analysis of Belarusian lakes: correlations of species diversity with hydrochemistry. Hydrobiol 605:99–112. doi: 10.1007/s10750-008-9323-2 CrossRefGoogle Scholar
  24. Liu P, Shokrani F (1978) Biological-Activities of Pyochelins - Iron-Chelating Agents of Pseudomonas-Aeruginosa. Infect Immun 22:878–890PubMedCentralPubMedGoogle Scholar
  25. Martin J, Ito Y, Homann V, Haygood M, Butler A (2006) Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp SP18. J Biol Inorg Chem 11:633–641. doi: 10.1007/s00775-006-0112-y CrossRefPubMedGoogle Scholar
  26. Martinez J, Butler A (2007) Marine amphiphilic siderophores: marinobactin structure, uptake, and microbial partitioning. J Inorg Biochem 101:1692–1698. doi: 10.1016/j.jinorgbio.2007.07.007 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Matthijs S, Tehrani K, Laus G, Jackson R, Cooper R, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434. doi: 10.1111/j.1462-2920.2006.01154.x CrossRefPubMedGoogle Scholar
  28. McMillan DGG et al (2010) Acquisition of Iron by Alkaliphilic Bacillus Species. Appl Environ Microbiol 76:6955–6961. doi: 10.1128/aem.01393-10 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Neilands JB (1976) Siderophores: diverse roles in microbial and human physiology. Ciba Found Symp (51):107–124Google Scholar
  30. Oliveira PH, Batagov A, Ward J, Baganz F, Krabben P (2006) Identification of erythrobactin, a hydroxamate-type siderophore produced by Saccharopolyspora erythraea. Lett Appl Microbiol 42:375–380. doi: 10.1111/j.1472-765X.2006.01849.x CrossRefPubMedGoogle Scholar
  31. Pattus F, Abdallah M (2000) Siderophores and iron-transport in microorganisms. J Chin Chem Soc 47:1–20CrossRefGoogle Scholar
  32. Pollock J, Weber KA, Lack J, Achenbach LA, Mormile MR, Coates JD (2007) Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp isolated from salt flat sediments of Soap Lake. Appl Microbiol Biotechnol 77:927–934. doi: 10.1007/s00253-007-1220-5 CrossRefPubMedGoogle Scholar
  33. Quadri LEN, Keating TA, Patel HM, Walsh CT (1999) Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4,2-bisthiazoline synthetase activity from PchD, PPchE, and PchF. Biochem 38:14941–14954. doi: 10.1021/bi991787c CrossRefGoogle Scholar
  34. Raymond KN, Dertz EA (2004) Biochemical and physical properties of siderophores. Iron transport in bacteria, vol 1. First edn. ASM Press, Washington, DC, pp 3–17CrossRefGoogle Scholar
  35. Rosconi F et al (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–927. doi: 10.1111/1462-2920.12075 CrossRefPubMedGoogle Scholar
  36. Sahay H, Mahfooz S, Singh AK, Singh S, Kaushik R, Saxena AK, Arora DK (2012) Exploration and characterization of agriculturally and industrially important haloalkaliphilic bacteria from environmental samples of hypersaline Sambhar lake, India. World J Microbiol Biotechnol 28:3207–3217. doi: 10.1007/s11274-012-1131-1 CrossRefPubMedGoogle Scholar
  37. Sandy M, Butler A (2009) Microbial Iron Acquisition: marine and Terrestrial Siderophores. Chem Rev 109:4580–4595. doi: 10.1021/cr9002787 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Sandy M, Han A, Blunt J, Munro M, Haygood M, Butler A (2010) Vanchrobactin and Anguibactin Siderophores Produced by Vibrio sp DS40M4. J Nat Prod 73:1038–1043. doi: 10.1021/np900750g PubMedCentralCrossRefPubMedGoogle Scholar
  39. Schwyn B, Neilands JB (1987) Universal Chemical-Assay for the Detection and Determination of Siderophores. Anal Biochem 160:47–56. doi: 10.1016/0003-2697(87)90612-9 CrossRefPubMedGoogle Scholar
  40. Sorokin DY, Foti M, Pinkart HC, Muyzer G (2007) Sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content. Appl Environ Microbiol 73:451–455. doi: 10.1128/aem.02087-06 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extrem 18:791–809. doi: 10.1007/s00792-014-0670-9 CrossRefGoogle Scholar
  42. Stintzi A, Barnes C, Xu L, Raymond KN (2000) Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc Natl Acad Sci USA 97:10691–10696. doi: 10.1073/pnas.200318797 PubMedCentralCrossRefPubMedGoogle Scholar
  43. Suo Z, Walsh CT, Miller DA (1999) Tandem heterocyclization activity of the multidomain 230 kDa HMWP2 subunit of Yersinia pestis yersiniabactin synthetase: interaction of the 1-1382 and 1383-2035 fragments. Biochem 38:14023–14035. doi: 10.1021/bi991574n CrossRefGoogle Scholar
  44. Telford JR, Raymond KN (1997) Amonabactin: a family of novel siderophores from a pathogenic bacterium. J Biol Inorg Chem 2:750–761. doi: 10.1007/s007750050191 CrossRefGoogle Scholar
  45. Valdebenito M, Crumbliss AL, Winkelmann G, Hantke K (2006) Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. Internatl J Med Microbiol 296:513–520. doi: 10.1016/j.ijmm.2006.06.003 CrossRefGoogle Scholar
  46. VanEngelen MR, Peyton BM, Mormile MR, Pinkart HC (2008) Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington. Biodegrad 19:841–850. doi: 10.1007/s10532-008-9187-1 CrossRefGoogle Scholar
  47. Vraspir JM, Holt PD, Butler A (2011) Identification of new members within suites of amphiphilic marine siderophores. Biometals 24:85–92. doi: 10.1007/s10534-010-9378-1 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Xu G, Martinez J, Groves J, Butler A (2002) Membrane affinity of the amphiphilic marinobactin siderophores. J Amer Chem Soc 124:13408–13415. doi: 10.1021/ja026768w CrossRefGoogle Scholar
  49. Zheng TF, Nolan EM (2012) Siderophore-based detection of Fe(III) and microbial pathogens. Metallomics 4:866–880. doi: 10.1039/c2mt20082a CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyMontana State UniversityBozemanUSA
  2. 2.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA
  3. 3.Department of Chemical and Biological EngineeringMontana State UniversityBozemanUSA
  4. 4.Center for Biofilm EngineeringMontana State UniversityBozemanUSA

Personalised recommendations