, Volume 19, Issue 6, pp 1109–1120 | Cite as

Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity

  • Souad Khemili-TalbiEmail author
  • Salima Kebbouche-Gana
  • Siham Akmoussi-Toumi
  • Yassmina Angar
  • Mohamed Lamine Gana
Original Paper


Natrialba sp. strain C21 was isolated from oil contaminated saline water in Ain Salah (Algeria) and has exhibited a good potential for degrading phenol (3 % v/v), naphthalene (3 % v/v), and pyrene (3 % v/v) at high salinity with high growth, enzymatic activity and biosurfactant production. Successful metabolism of aromatic hydrocarbon compounds of the strain Natrialba sp. C21 appears to require the ortho-cleavage pathway. Indeed, assays of the key enzymes involved in the ring cleavage of catechol 1, 2-dioxygenase indicated that degradation of the phenol, naphthalene and pyrene by strain Natrialba sp. C21 was via the ortho-cleavage pathway. Cells grown on aromatic hydrocarbons displayed greater ortho-activities mainly towards catechol, while the meta-activity was very low. Besides, biosurfactants derived from the strain C21 were capable of effectively emulsifying both aromatic and aliphatic hydrocarbons and seem to be particularly promising since they have particular adaptations like the increased stability at high temperature and salinity conditions. This study clearly demonstrates for the first time that strain belonging to the genera Natrialba is able to grow at 25 % (w/v) NaCl, utilizing phenol, naphthalene, and pyrene as the sole carbon sources. The results suggest that the isolated halophilic archaeon could be a good candidate for the remediation process in extreme environments polluted by aromatic hydrocarbons. Moreover, the produced biosurfactant offers a multitude of interesting potential applications in various fields of biotechnology.


Aromatic hydrocarbons Ortho-cleavage pathway Catechol 1,2 dioxygenase Halophilic archaea Natrialba sp. C21 Biosurfactants Emulsion stability 



The authors thank Professors Khemili Amina and Talbi Zakaria for their careful reading and advancing and CNEPRU for the support to the research.


  1. Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328CrossRefPubMedGoogle Scholar
  2. Al-Mailem DM, Eliyas M, Radwan SS (2013) Oil-bioremediation potential of two hydrocarbonoclastic, diazotrophic Marinobacter strains from hypersaline areas along the Arabian Gulf coasts. Extremophiles 17:463–470CrossRefPubMedGoogle Scholar
  3. Ariech M, Guechi A (2015) Assessment of four different methods for selecting biosurfactant producing extremely halophilic bacteria. Afr J Biotechnol 14(21):1764–1772CrossRefGoogle Scholar
  4. Arulazhagan P, Vasudevan N (2009) Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Mar Pollut Bull 58(2):256–262CrossRefPubMedGoogle Scholar
  5. Ashok T, Saxena S, Musarrat J (1995) Isolation and characterization of four polycyclic aromatic hydrocarbon degrading bacteria from soil near an oil refinery. Lett Appl Microbiol 21:246–248CrossRefPubMedGoogle Scholar
  6. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508CrossRefPubMedGoogle Scholar
  7. Berlendis S, Cayol JL, Verhe F, Laveau S, Tholozan JC, Ollivier B, Auria R (2010) First evidence of aerobic biodegradation of BTEX compounds by pure cultures of Marinobacter. Appl Biochem Biotechnol 160:1992–1999CrossRefPubMedGoogle Scholar
  8. Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263CrossRefGoogle Scholar
  9. Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. App Environ Microbiol 69:3280–3287CrossRefGoogle Scholar
  10. Bonfá MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676CrossRefPubMedGoogle Scholar
  11. Bonfá MRL, Grossman MJ, Piubeli F, Mellado E, Durrant LR (2013) Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodegradation 24:699–709CrossRefPubMedGoogle Scholar
  12. Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529CrossRefPubMedGoogle Scholar
  13. Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228CrossRefPubMedGoogle Scholar
  14. Cerqueira VS, Hollenbach EB, Maboni F, Vainstein MH, Camargo FA, do Carmo R, Peralba M, Bento FM (2011) Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresour Technol 102(23):11003–11010CrossRefPubMedGoogle Scholar
  15. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. App Environ Microbiol 53:224–229Google Scholar
  16. Cowan DA, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Tech 49:326–346CrossRefGoogle Scholar
  17. Cuadros-Orellana S, Pohlschroderb M, Grossmanc MJ, Durrant LR (2012) Biodegradation of aromatic compounds by a halophilic archaeon isolated from the Dead Sea. Chem Eng Trans 27:13–18Google Scholar
  18. Cytryn E, Minz D, Oremland RS, Cohen Y (2000) Distribution and diversity of archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar Lake, Sinai, Egypt). Appl Environ Microbiol 66:3269–3276  CrossRefGoogle Scholar
  19. Dalvi S, Azetsu S, Patrauchan MA, Aktas DF, Fathepure BZ (2012) Proteogenomic elucidation of the initial steps in the benzene degradation pathway of a novel halophile, Arhodomonas sp. Strain Rozel, isolated from a hypersaline environment. Appl Environ Microbiol 78:7309–7316PubMedCentralCrossRefPubMedGoogle Scholar
  20. Dalvi S, Nicholsona C, Najarc F, Roec BA, Canaanb P, Hartsonb SD, Fathepurea BZ (2014) Isolation of a novel Arhodomonas sp. strain seminole and its genetic potential to degrade aromatic compounds at high salinity. Appl Environ Microbiol 80(21):6664–6676PubMedCentralCrossRefPubMedGoogle Scholar
  21. Das M, Das SK, Mukherjee RK (1998) Surface active properties of the culture filtrates of a Micrococcus species grown on n-alkenes and sugars. Bioresour Technol 63:231–235CrossRefGoogle Scholar
  22. Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798CrossRefPubMedGoogle Scholar
  23. Denger K, Schink B (1995) New halo and thermotolerant fermenting bacteria producing surface-active compounds. App Microbiol Biotechnol 44:161–166CrossRefGoogle Scholar
  24. Djeridi I, Militon C, Grossi V, Cuny P (2013) Evidence for surfactant production by the haloarchaeon Haloferax sp. MSNC14 in hydrocarbon-containing media. Extremophiles 17:669–675CrossRefPubMedGoogle Scholar
  25. Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485PubMedCentralPubMedGoogle Scholar
  26. Erdoğmuş SF, Mutlu B, Korcan SE, Guven K, Konuk M (2013) Aromatic hydrocarbon degradation by halophilic archaea isolated from Çamalti Saltern, Turkey. Water Air Soil Pollut 224:1449CrossRefGoogle Scholar
  27. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:1–16CrossRefGoogle Scholar
  28. Fu W, Oriel P (1999) Degradation of 3-phenylpropionic acid by Haloferaxsp. D1227. Extremophiles 3:45–53CrossRefPubMedGoogle Scholar
  29. Gao W, Cui Z, Li Q, Xu G, Jia X, Zheng L (2013) Marinobacter nanhaiticus sp. nov., polycyclic aromatic hydrocarbon-degrading bacterium isolated from the sediment of the South China Sea. Antonie Van Leeuwenhoek 103:485–491CrossRefPubMedGoogle Scholar
  30. Garcia MT, Ventosa A, Mellado E (2005) Catabolic versatility of aromatic compound degrading halophilic bacteria. FEMS Microbiol Ecol 54:97–109CrossRefPubMedGoogle Scholar
  31. Gibbs GW (1997) Estimating residential polycyclic aromatic hydrocarbon (PAH) related lung cancer risk using occupational data. Ann Occup Hyg 41:49–53CrossRefGoogle Scholar
  32. Guzik U, Hupert-Kocurek K, Marchlewicz A, Wojcieszynska D (2014) Enhancement of biodegradation potential of catechol 1,2-dioxygenase through its immobilization in calcium alginate gel. Electron J Biotechnol 17:83–88CrossRefGoogle Scholar
  33. Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590CrossRefPubMedGoogle Scholar
  34. Hassan HA, Rizk NMH, Hefnawy MA, Awad AM (2012) Isolation and characterization of halophilic aromatic and chloroaromatic degrader from Wadi El-Natrun Soda lakes. Life Sci J9:1565–1570Google Scholar
  35. Karanth NGK, Deo PG, Veenanadig NK (1999) Production of biosurfactants and their importance. Curr Sci 77:116–125Google Scholar
  36. Kebbouche-Gana S, Gana ML, Khemili S, Fazouane-Naimi F, Bouanane NA, Penninckx M, Hacene H (2009) Isolation and characterization of halophilic Archaea able to produce biosurfactant. J Ind Microbiol Biotechnol 36:727–738CrossRefPubMedGoogle Scholar
  37. Kebbouche-Gana S, Gana ML, Ferrioune I, Khemili S, Lenchi N, Akmouci-Toumi S, Bouanane-Darenfed NA, Djelali ND (2013) Production of biosurfactant on crude date syrup under saline conditions by entrapped cells of Natrialba sp. strain E21, an extremely halophilic bacterium isolated from a solar saltern (Ain Salah, Algeria). Extremophiles 17:981–993 CrossRefPubMedGoogle Scholar
  38. Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C (2012) Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination 285:198–204CrossRefGoogle Scholar
  39. Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92CrossRefPubMedGoogle Scholar
  40. Mahiuddin MD, Fakhruddin ANM, Al-Mahin A (2012) Degradation of phenol via meta cleavage pathway by Pseudomonas fluorescens PU1. ISRN Microbiology, 2012, ID741820.
  41. Marini M, Frapiccini E (2013) Persistence of polycyclic aromatic hydrocarbons in sediments in the deeper area of the Northern Adriatic Sea (Mediterranean Sea). Chemosphere 90:1839–1846CrossRefPubMedGoogle Scholar
  42. Martins LF, Peixoto RS (2012) Biodegradation of petroleum hydrocarbons in hypersaline environments. Braz J Microbiol 43:865–872PubMedCentralCrossRefPubMedGoogle Scholar
  43. Means JC (1995) Influence of salinity upon sediment–water partitioning ofaromatic hydrocarbons. Mar Chem 51:3–16CrossRefGoogle Scholar
  44. Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAH in the environment. Environ Sci Technol 26:1278–1284CrossRefGoogle Scholar
  45. Meyer DD, Santestevan NA, Bücker F, Salamoni SP, Andreazza R, De Oliveira Camargo FA, Bento FM (2012) Capability of a selected bacterial consortium for degrading diesel/biodiesel blends (B20): enzyme and biosurfactant production. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(12):1776–1784CrossRefPubMedGoogle Scholar
  46. Mishra S, Singh SN, Pande V (2014) Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour Technol 164:299–308CrossRefPubMedGoogle Scholar
  47. Montalvo-Rodrigue RJ, Lopez-Garriga H, Vreeland A, Oren A, Ventosa A, Kamekura M (2000) Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. IntJSystEvolMicrobiol 50:1065–1071Google Scholar
  48. Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225CrossRefPubMedGoogle Scholar
  49. Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen. nov. sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754CrossRefPubMedGoogle Scholar
  50. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standarts for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238CrossRefGoogle Scholar
  51. Ottow JCG, Zolg W (1974) Improved procedure and colorimetrics test for the detection of ortho- and meta-cleavage of protocatechuate by Pseudomonas isolates. Canadian J Microbiol 20:1059–1061CrossRefGoogle Scholar
  52. Ozcan B, Cokmus C, Coleri A, Caliskan M (2006) Characterization of extremely halophilic archaea isolated from saline environment in different parts of Turkey. Microbiol 75:739–748CrossRefGoogle Scholar
  53. Ozcan B, Ozyilmaz G, Cokmus C, Caliskan M (2009) Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J Ind Microbiol Biotechnol 36:105–110CrossRefPubMedGoogle Scholar
  54. Pallas NR, Pethica BA (1983) The surface tension of water. Colloids Surf 6:221–227CrossRefGoogle Scholar
  55. Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interfac 138:24–58CrossRefGoogle Scholar
  56. Pérez-Pantoja D, González B, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. In: Timmis KN (ed) Handbook of Hydrocarbon and Lipid Microbiology, Springer-Verlag, Berlin, pp 799–837Google Scholar
  57. Plotnikova EG, Alyntseva OV, Kosheleva IA, Puntus IF, Filonov AE, Gavrish E, Demakov VA, Boronin AM (2001) Bacterial degraders of polycyclic aromatic hydrocarbons isolated from salt-contaminated soils and bottom sediments in salt mining areas. Microbiol 70:51–58CrossRefGoogle Scholar
  58. Plotnikova EG, Yastrebova OV, Anan’ina LN, Dorofeeva LV, Ya Lysanskaya V, Demakov VA (2011) Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons. Russian J Ecol 42:502–509CrossRefGoogle Scholar
  59. Purohit MK, Raval VH, Singh PS (2014) Haloalkaliphilic bacteria: molecular diversity and biotechnological applications. Geomicrobiol Biogeoch Soil Biol 39:61–79CrossRefGoogle Scholar
  60. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage; proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092CrossRefPubMedGoogle Scholar
  61. Reineke W (2001) Aerobic and anaerobic biodegradation potentials of microor- ganisms. In: Beek B (ed) The Handbook of Environmental Chemistry. Vol. 2 Part K Biodegradation and Persistance, Springer-Verlag, Berlin; Heidelberg, pp 1–140Google Scholar
  62. Sarafin Y, Donio MB, Velmurugan S, Michaelbabu M, Citarasu T (2014) Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi J Biol Sci 21(6):511–519PubMedCentralCrossRefPubMedGoogle Scholar
  63. Silva AS, Jacques RJS, Andreazza R, Bento FM, Roesch LFW, Camargo FAO (2012) Properties of catechol 1,2-dioxygenase in the cell free extract and immobilized extract of Mycobacterium fortuitum. Braz J Microbiol 44(1):291–297 CrossRefGoogle Scholar
  64. Song YJ (2009) Characterization of aromatic hydrocarbon degrading bacteria isolated from pine litter. Korean J Microbiol Biotech 37:333–339Google Scholar
  65. Stanier RY, Ingraham JL (1954) Protocatechuic acid oxidase. J Biol Chem 210:799–808PubMedGoogle Scholar
  66. Stanier RY, Ornston LN (1973) The beta-ketoadipate pathway. Adv Microb Physiol 9:89–151CrossRefPubMedGoogle Scholar
  67. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  68. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon degrading extremely halophilic Archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231CrossRefPubMedGoogle Scholar
  69. van der Meer JR, de Vos WM, Harayama S, Zehnder AJB (1992) Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56:677–694PubMedCentralPubMedGoogle Scholar
  70. Van Hamme JD, Singh AM, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 6:503–549CrossRefGoogle Scholar
  71. Ventosa A (2012) Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 95:789–798CrossRefPubMedGoogle Scholar
  72. Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94CrossRefPubMedGoogle Scholar
  73. Wild SR, Jones KC (1993) Biological and abiotic losses of polynuclear aromatichydrocarbons (PAHs) from soils freshly amended with sewage sludge. EnvironToxicol Chem 12:5–12Google Scholar
  74. Zhang Y, Miller RM (1995) Effects of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Environ Microbiol 61:2247–2251Google Scholar
  75. Zhao B, Wang H, Mao X, Li R (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205–210CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Souad Khemili-Talbi
    • 1
    Email author
  • Salima Kebbouche-Gana
    • 1
  • Siham Akmoussi-Toumi
    • 1
  • Yassmina Angar
    • 2
  • Mohamed Lamine Gana
    • 3
  1. 1.Laboratoire Conservation et Valorisation des Ressources Biologiques (VALCOR), Faculté des SciencesUniversité M’Hamed Bougara de BoumerdesBoumerdèsAlgeria
  2. 2.Faculté des SciencesUniversité M’Hamed Bougara de BoumerdesBoumerdèsAlgeria
  3. 3.Centre de Recherche et de DéveloppementSONATRACHBoumerdèsAlgeria

Personalised recommendations