Extremophiles

, Volume 19, Issue 4, pp 721–740 | Cite as

Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes

  • Mohamed Jebbar
  • Bruno Franzetti
  • Eric Girard
  • Philippe Oger
Review

Abstract

Prokaryotes inhabiting in the deep sea vent ecosystem will thus experience harsh conditions of temperature, pH, salinity or high hydrostatic pressure (HHP) stress. Among the fifty-two piezophilic and piezotolerant prokaryotes isolated so far from different deep-sea environments, only fifteen (four Bacteria and eleven Archaea) that are true hyper/thermophiles and piezophiles have been isolated from deep-sea hydrothermal vents; these belong mainly to the Thermococcales order. Different strategies are used by microorganisms to thrive in deep-sea hydrothermal vents in which “extreme” physico-chemical conditions prevail and where non-adapted organisms cannot live, or even survive. HHP is known to impact the structure of several cellular components and functions, such as membrane fluidity, protein activity and structure. Physically the impact of pressure resembles a lowering of temperature, since it reinforces the structure of certain molecules, such as membrane lipids, and an increase in temperature, since it will also destabilize other structures, such as proteins. However, universal molecular signatures of HHP adaptation are not yet known and are still to be deciphered.

Keywords

Deep biosphere Diversity High hydrostatic pressure Enzymatic function Molecular adaptation 

Notes

Acknowledgments

This work was supported by the Agence Nationale de la Recherche (ANR-10-BLAN-1725 01-Living deep). We are indebted to Helen McCombie [Bureau de Traduction de l’Université (BTU), Université de Bretagne Occidentale-Brest] for helpful language improvement.

References

  1. Aguilar PS, de Mendoza D (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62:1507–1514PubMedGoogle Scholar
  2. Akasaka K (2006) Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev 106:1814–1835. doi:10.1021/cr040440z PubMedGoogle Scholar
  3. Akasaka K, Kitahara R, Kamatari YO (2013) Exploring the folding energy landscape with pressure. Arch Biochem Biophys 531:110–115. doi:10.1016/j.abb.2012.11.016 PubMedGoogle Scholar
  4. Alain K, Marteinsson VT, Miroshnichenko ML et al (2002a) Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339PubMedGoogle Scholar
  5. Alain K, Olagnon M, Desbruyères D et al (2002b) Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol Ecol 42:463–476PubMedGoogle Scholar
  6. Alazard D (2003) Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178. doi:10.1099/ijs.0.02323-0 PubMedGoogle Scholar
  7. Ascone I, Savino C, Kahn R, Fourme R (2010) Flexibility of the Cu, Zn superoxide dismutase structure investigated at 0.57 GPa. Acta Crystallogr D Biol Crystallogr 66:654–663. doi:10.1107/S0907444910012321 PubMedGoogle Scholar
  8. Bale SJ, Goodman K, Rochelle PA et al (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521PubMedGoogle Scholar
  9. Barstow B, Ando N, Kim CU, Gruner SM (2008) Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift. Proc Natl Acad Sci USA 105:13362–13366. doi:10.1073/pnas.0802252105 PubMedCentralPubMedGoogle Scholar
  10. Beranova J, Jemiola-Rzeminska M, Elhottova D et al (2008) Metabolic control of the membrane fluidity in Bacillus subtilis during cold adaptation. Biochim Biophys Acta-Biomembr 1778:445–453Google Scholar
  11. Birrien JL, Zeng X, Jebbar M et al (2011) Pyrococcus yayanosii sp. nov., an obligate piezophilic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 61:2827–2831. doi:10.1099/ijs.0.024653-0 PubMedGoogle Scholar
  12. Boonyaratanakornkit BB, Park CB, Clark DS (2002) Pressure effects on intra- and intermolecular interactions within proteins. Biochim Biophys Acta 1595:235–249PubMedGoogle Scholar
  13. Borges N, Ramos A, Raven NDH et al (2002) Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6:209–216PubMedGoogle Scholar
  14. Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846PubMedCentralPubMedGoogle Scholar
  15. Campbell B, Engel A, Porter M, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468PubMedGoogle Scholar
  16. Canganella F, Gonzalez JM, Yanagibayashi M, Kato C, Horikoshi K (1997) Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol 168:1–7PubMedGoogle Scholar
  17. Canganella F, Jones WJ, Gambacorta A, Antranikian G (1998) Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Bacteriol 48:1181–1185PubMedGoogle Scholar
  18. Canganella F, Gambacorta A, Kato C, Horikoshi K (2000) Effects of hydrostatic pressure and temperature on physiological traits of Thermococcus guaymasensis and Thermococcus aggregans growing on starch. Microbiol Res 154:297–306PubMedGoogle Scholar
  19. Cao Y, Chastain RA, Eloe EA, Nogi Y, Kato C, Bartlett DH (2014) Novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico trench. Appl Environ Microbiol 80(1):54–60. doi:10.1128/AEM.02288-13 PubMedCentralPubMedGoogle Scholar
  20. Charlou JL, Donval JP, Fouquet Y et al (2002) Geochemistry of high H(2) and CH(4) vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 degrees 14′N, MAR). Chem Geol 191:345–359. doi:10.1016/s0009-2541(02)00134-1 Google Scholar
  21. Charlou JL, Donval JP, Konn C et al (2010) High production of H-2 and CH4 and abiotic hydrocarbons in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. Geochim Cosmochim Acta 74:A163–A163Google Scholar
  22. Chong PL, Ayesa U, Daswani VP, Hur EC (2012) On physical properties of tetraether lipid membranes: effects of cyclopentane rings. Archaea 2012:138439. doi:10.1155/2012/138439 PubMedCentralPubMedGoogle Scholar
  23. Collins MD, Hummer G, Quillin ML et al (2005) Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. Proc Natl Acad Sci USA 102:16668–16671. doi:10.1073/pnas.0508224102 PubMedCentralPubMedGoogle Scholar
  24. Corliss JB, Ballard RD (1977) Oases of life in the cold abyss. Natl Geogr Mag 152:440–453Google Scholar
  25. Crépeau V, Cambon Bonavita MA, Lesongeur F, Randrianalivelo H et al (2011) Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEBS Lett 76:524–540Google Scholar
  26. Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation—genetics and physiology. Annu Rev Microbiol 45:569–606PubMedGoogle Scholar
  27. Cybulski LE, Albanesi D, Mansilla MC et al (2002) Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol Microbiol 45:1379–1388PubMedGoogle Scholar
  28. Da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153PubMedGoogle Scholar
  29. Dannenmuller O, Arakawa K, Eguchi T et al (2000) Membrane properties of archaeal macrocyclic diether phospholipids. Chemistry (Easton) 6:645–654Google Scholar
  30. Dawson KS, Freeman KH, Macalady JL (2012) Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions. Org Geochem 48:1–8Google Scholar
  31. Deming JW, Somers LK, Straube WL, Swartz DG, MacDonell MT (1988) Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 10:152–160Google Scholar
  32. De Long EF, Franks DG, Yayanos AA (1997) Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Env Microbiol 63:2105–2108Google Scholar
  33. De Rosa M, Esposito E, Gambacorta A et al (1980a) Complex lipids of Caldariella acidophila, a thermoacidophile archaebacterium. Phytochemistry 19:821–826Google Scholar
  34. De Rosa M, Esposito E, Gambacorta A et al (1980b) Effects of temperature on ether lipid composition of Caldariella acidophila. Phytochemistry 19:827–831Google Scholar
  35. Dreyfus G, Guimaraes-Motta H, Silva J (1988) Effect of hydrostatic pressure on the mitochondrial ATP synthase. Biochemistry 27:6704–6710PubMedGoogle Scholar
  36. Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of kebrit deep, red sea. Arch Microbiol 172:213–218PubMedGoogle Scholar
  37. Edmond JM, Vondamm KL, McDuff RE, Measures CI (1982) Chemistry of hot springs on the east pacific rise and their effluent dispersal. Nature 297:187–191. doi:10.1038/297187a0 Google Scholar
  38. Eloe EA, Malfatti F, Gutierrez J et al (2011) Isolation and characterization of a psychropiezophilic alphaproteobacterium. Appl Env Microbiol 77:8145–8153. doi:10.1128/AEM.05204-11 Google Scholar
  39. Empadinhas N, Marugg JD, Borges N et al (2001) Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii—biochemical and genetic characterization of key enzymes. J Biol Chem 276:43580–43588PubMedGoogle Scholar
  40. Erauso G, Reysenbach AL, Godfroy A et al (1993) Pyrococcus abyssi sp-nov, a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 160:338–349Google Scholar
  41. Erijman L, Lorimer G, Weber G (1993) Reversible dissociation and conformational stability of dimeric ribulose bisphosphate carboxylase. Biochemistry 32:5187–5195PubMedGoogle Scholar
  42. Ernst M, Freisleben HJ, Antonopoulos E et al (1998) Calorimetry of archaeal tetraether lipid—indication of a novel metastable thermotropic phase in the main phospholipid from Thermoplasma acidophilum cultured at 59 degrees C. Chem Phys Lipids 94:1–12Google Scholar
  43. Euzéby J (2013) List of prokaryotic names with standing in nomenclature. http://www.bacterio.net/number.html. Accessed 26 Jul 2013
  44. Flores GE, Wagner ID, Liu Y, Reysenbach A-L (2012) Distribution, abundance, and diversity patterns of the thermoacidophilic “deep-sea hydrothermal vent euryarchaeota 2”. Front Microbiol 3:47. doi:10.3389/fmicb.2012.00047 PubMedCentralPubMedGoogle Scholar
  45. Foguel D, Suarez MC, Ferrão-Gonzales AD et al (2003) Dissociation of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. Proc Natl Acad Sci USA 100:9831–9836. doi:10.1073/pnas.1734009100 PubMedCentralPubMedGoogle Scholar
  46. Fourme R, Ascone I, Kahn R et al (2002) Opening the high-pressure domain beyond 2 kbar to protein and virus crystallography. Structure 10:1409–1414PubMedGoogle Scholar
  47. Fourme R, Girard E, Kahn R et al (2006) High-pressure macromolecular crystallography (HPMX): status and prospects. Biochim Biophys Acta 1764:384–390. doi:10.1016/j.bbapap.2006.01.008 PubMedGoogle Scholar
  48. Franzmann PD, Springer N, Ludwig W et al (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581Google Scholar
  49. Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328PubMedGoogle Scholar
  50. Galinski EA, Truper HG (1994) Microbial behavior in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108Google Scholar
  51. Gerasimchuk AL, Shatalov AA, Novikov AL et al (2010) The search for sulfate-reducing bacteria in mat samples from the lost city hydrothermal field by molecular cloning. Microbiology 79:96–105. doi:10.1134/S0026261710010133 Google Scholar
  52. Girard E, Kahn R, Mezouar M et al (2005) The first crystal structure of a macromolecular assembly under high pressure: CpMV at 330 MPa. Biophys J 88:3562–3571. doi:10.1529/biophysj.104.058636 PubMedCentralPubMedGoogle Scholar
  53. Girard E, Marchal S, Perez J et al (2010) Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure. Biophys J 98:2365–2373. doi:10.1016/j.bpj.2010.01.058 PubMedCentralPubMedGoogle Scholar
  54. Gliozzi A, Rolandi R, De Rosa M, Gambacorta A (1983) Monolayer black membranes from bipolar lipids of archaebacteria and their temperature-induced structural changes. J Membr Biol 75:45–56PubMedGoogle Scholar
  55. Goncalves LG, Lamosa P, Huber R, Santos H (2008) Di-myo-inositol phosphate and novel UDP-sugars accumulate in the extreme hyperthermophile Pyrolobus fumarii. Extremophiles 12:383–389. doi:10.1007/s00792-008-0143-0 PubMedGoogle Scholar
  56. Gonthier I, Rager MN, Metzger P et al (2001) A di-O-dihydrogeranylgeranyl glycerol from Thermococcus S557, a novel ether lipid, and likely intermediate in the biosynthesis of diethers in Archaea. Tetrahedron Lett 42:2795–2797Google Scholar
  57. Gorovits B, Raman C, Horowitz P (1995) High hydrostatic pressure induces the dissociation of cpn60 tetradecamers and reveals a plasticity of the monomers. J Biol Chem 270:2061–2066PubMedGoogle Scholar
  58. Gross M, Auerbach G, Jaenicke R (1993) The catalytic activities of monomeric enzymes show complex pressure dependence. FEBS Lett 321:256–260PubMedGoogle Scholar
  59. Hafenbradl D, Keller M, Thiericke R, Stetter KO (1993) A novel unsaturated archael ether core lipid from the hyperthermophile Methanopyrus kandleri. Syst Appl Microbiol 16:165–169Google Scholar
  60. Hei DJ, Clark DS (1994) Pressure stabilization of proteins from extreme thermophiles. Appl Env Microbiol 60:932–939Google Scholar
  61. Huber R, Kurr M, Jannasch K, Stetter K (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature 342:833–834Google Scholar
  62. Huber J, Butterfield D, Baross J (2003) Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43:393–409PubMedGoogle Scholar
  63. Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725. doi:10.1126/science.229.4715.717 PubMedGoogle Scholar
  64. Jarrell HC, Zukotynski KA, Sprott GD (1998) Lateral diffusion of the total polar lipids from Thermoplasma acidophilum in multilamellar liposomes. Biochim Biophys Acta-Biomembr 1369:259–266Google Scholar
  65. Johnson K, Beehler C, Sakamoto-Arnold C, Childress J (1986) In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science 231:1139–1141PubMedGoogle Scholar
  66. Jun X, Lupeng L, Minjuan X et al (2011) Complete genome sequence of the obligate piezophilic hyperthermophilic archaeon Pyrococcus yayanosii CH1. J Bacteriol 193:4297–4298. doi:10.1128/JB.05345-11 PubMedCentralPubMedGoogle Scholar
  67. Kallmeyer J, Pockalny R, Adhikari RR et al (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA 109:16213–16216. doi:10.1073/pnas.1203849109 PubMedCentralPubMedGoogle Scholar
  68. Kasai R, Kitajima Y, Martin CE et al (1976) Molecular control of membrane properties during temperature acclimatation—membrane fluidity regulation of fatty acid desaturase action. Biochemistry 15:5228–5233PubMedGoogle Scholar
  69. Kawano H, Nakasone K, Matsumoto M et al (2004) Differential pressure resistance in the activity of RNA polymerase isolated from Shewanella violacea and Escherichia coli. Extremophiles 8:367–375. doi:10.1007/s00792-004-0397-0 PubMedGoogle Scholar
  70. Khelaifia S, Fardeau M-L, Pradel N et al (2011) Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int J Syst Evol Microbiol 61:2706–2711. doi:10.1099/ijs.0.028670-0 PubMedGoogle Scholar
  71. Lai D, Springstead JR, Monbouquette HG (2008) Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus. Extremophiles 12:271–278PubMedGoogle Scholar
  72. Lamosa P, Martins LO, Da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl Env Microbiol 64:3591–3598Google Scholar
  73. Lamosa P, Turner DL, Ventura R et al (2003) Protein stabilization by compatible solutes. Effect of diglycerol phosphate on the dynamics of Desulfovibrio gigas rubredoxin studied by NMR. Eur J Biochem 270:4606–4614PubMedGoogle Scholar
  74. Lamosa P, Rodrigues MV, Gonçalves LG et al (2013) Organic solutes in the deepest phylogenetic branches of the Bacteria: identification of α(1-6)glucosyl-α(1-2)glucosylglycerate in Persephonella marina. Extremophiles 17:137–146. doi:10.1007/s00792-012-0500-x PubMedGoogle Scholar
  75. Lauro F, Chastain R, Ferriera S et al (2013) Draft Genome Sequence of the Deep-Sea Bacterium Shewanella benthica Strain KT99. Genome Announc 1:e00210–e00213. doi:10.1128/genomeA.00210-13.Copyright PubMedCentralPubMedGoogle Scholar
  76. Lee AG (2003) Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40PubMedGoogle Scholar
  77. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta-Biomembr 1666:62–87Google Scholar
  78. Li H, Yamada H, Akasaka K (1998) Effect of pressure on individual hydrogen bonds in proteins. Basic Pancreatic trypsin inhibitor. Biochemistry 37:1167–1173PubMedGoogle Scholar
  79. Lu B, Li Q, Liu W, Ruan K (1997) Effects of hydrostatic pressure on the activity of rat ribosome and cell-free translation system. Biochem Mol Biol Int 43:499–506PubMedGoogle Scholar
  80. Lucas S, Han J, Lapidus A et al (2012) Complete genome sequence of the thermophilic, piezophilic, heterotrophic bacterium Marinitoga piezophila KA3. J Bacteriol 194:5974–5975. doi:10.1128/JB.01430-12 PubMedCentralPubMedGoogle Scholar
  81. Luke KA, Higgins CL, Wittung-Stafshede P (2007) Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS J 274:4023–4033. doi:10.1111/j.1742-4658.2007.05955.x PubMedGoogle Scholar
  82. Macdonald AG, Martinac B (2005) Effect of high hydrostatic pressure on the bacterial mechanosensitive channel MscS. Eur Biophys J 34:434–441. doi:10.1007/s00249-005-0478-8 PubMedGoogle Scholar
  83. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98PubMedGoogle Scholar
  84. Mangelsdorf K, Zink KG, Birrien JL, Toffin L (2005) A quantitative assessment of pressure dependent adaptive changes in the membrane lipids of piezosensitive deep sub-seafloor bacterium. Org Geochem 36:1459–1479Google Scholar
  85. Marassio G, Prangé T, David HN et al (2011) Pressure-response analysis of anesthetic gases xenon and nitrous oxide on urate oxidase: a crystallographic study. FASEB J 25:2266–2275. doi:10.1096/fj.11-183046 PubMedGoogle Scholar
  86. Marchi M, Akasaka K (2001) Simulation of hydrated BPTI at high pressure: changes in hydrogen bonding and its relation with NMR experiments. J Phys Chem B 105:711–714Google Scholar
  87. Marr AG, Ingraham JL (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84:1260–1267PubMedCentralPubMedGoogle Scholar
  88. Marteinsson VT, Birrien JL, Reysenbach AL et al (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49(Pt 2):351–359PubMedGoogle Scholar
  89. Martin DD, Bartlett DH, Roberts MF (2002) Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 6:507–514. doi:10.1007/s00792-002-0288-1 PubMedGoogle Scholar
  90. Martins LO, Santos H (1995) Accumulation of mannosylglycerate and di-myo-inosytol-phosphate by Pyrococcus furiosus in response to salinity and temperature. Appl Environ Microbiol 61:3299–3303PubMedCentralPubMedGoogle Scholar
  91. Martins LO, Carreto LS, DaCosta MS, Santos H (1996) New compatible solutes related to di-myo-inositol-phosphate in members of the order Thermotogales. J Bacteriol 178:5644–5651PubMedCentralPubMedGoogle Scholar
  92. Martins LO, Huber R, Huber H et al (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63:896–902PubMedCentralPubMedGoogle Scholar
  93. Masson P, Bec N, Froment M-T et al (2004) Rate-determining step of butyrylcholinesterase-catalyzed hydrolysis of benzoylcholine and benzoylthiocholine. Volumetric study of wild-type and D70G mutant behavior. Eur J Biochem 271:1980–1990. doi:10.1111/j.1432-1033.2004.04110.x PubMedGoogle Scholar
  94. Mathai JC, Sprott GD, Zeidel ML (2001) Molecular mechanisms of water and solute transport across archaebacterial lipid membranes. J Biol Chem 276:27266–27271PubMedGoogle Scholar
  95. Matsuno Y, Sugai A, Higashibata H et al (2009) Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. Biosci Biotechnol Biochem 73:104–108. doi:10.1271/bbb.80520 PubMedGoogle Scholar
  96. McElhaney RN (1984a) The structure and function of the Acholeplasma laidlawii plasma membrane. Biochim Biophys Acta 779:1–42PubMedGoogle Scholar
  97. McElhaney RN (1984b) The relationship between membrane fluidity and phase state and the ability of bacteria and mycoplasma to grow and survive at various temperatures. In: Manson LA (ed) Kates M. Membr. fluidity. Plenum Press, New York, pp 249–276Google Scholar
  98. Mombelli E, Shehi E, Fusi P, Tortora P (2002) Exploring hyperthermophilic proteins under pressure: theoretical aspects and experimental findings. Biochim Biophys Acta 25:392–396Google Scholar
  99. Morita T (2003) Structure-based analysis of high pressure adaptation of alpha-actin. J Biol Chem 278:28060–28066. doi:10.1074/jbc.M302328200 PubMedGoogle Scholar
  100. Nagae T, Kato C, Watanabe N (2012) Structural analysis of 3-isopropylmalate dehydrogenase from the obligate piezophile Shewanella benthica DB21MT-2 and the nonpiezophile Shewanella oneidensis MR-1. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 68:265–268. doi:10.1107/S1744309112001443 Google Scholar
  101. Neves C, da Costa MS, Santos H (2005) Compatible solutes of the hyperthermophile Palaeococcus ferrophilus: osmoadaptation and thermoadaptation in the order thermococcales. Appl Env Microbiol 71:8091–8098. doi:10.1128/AEM.71.12.8091-8098.2005 Google Scholar
  102. Nichols DS, Miller MR, Davies NW et al (2004) Cold adaptation in the antarctic archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J Bacteriol 186:8508–8515PubMedCentralPubMedGoogle Scholar
  103. Nishiguchi Y, Miwa T, Abe F (2008) Pressure-adaptive differences in lactate dehydrogenases of three hagfishes: Eptatretus burgeri, Paramyxine atami and Eptatretus okinoseanus. Extremophiles 12:477–480. doi:10.1007/s00792-008-0140-3 PubMedGoogle Scholar
  104. Nisius L, Grzesiek S (2012) Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network. Nat Chem 4:711–717. doi:10.1038/nchem.1396 PubMedGoogle Scholar
  105. Nogi Y, Masui N, Kato C (1998) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2(1):1–7PubMedGoogle Scholar
  106. Nogi Y, Kato C, Horikoshi K (2002) Psychromonas kaikoae sp. nov., a novel from the deepest piezophilic bacterium cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52(5):1527–1532Google Scholar
  107. Nogi Y, Hosoya S, Kato C, Horikoshi K (2004) Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 54(5):1627–1631PubMedGoogle Scholar
  108. Nunes OC, Manaia CM, Dacosta MS, Santos H (1995) Compatible solutes in the thermophilic bacteria Rhodothermus marinus and Thermus thermophilus. Appl Environ Microbiol 61:2351–2357PubMedCentralPubMedGoogle Scholar
  109. Nunoura T, Oida H, Nakaseama M et al (2010) Archaeal diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa trough. Appl Env Microbiol 76:1198–1211. doi:10.1128/AEM.00924-09 Google Scholar
  110. Occhipinti E, Bec N, Gambirasio B et al (2006) Pressure and temperature as tools for investigating the role of individual non-covalent interactions in enzymatic reactions Sulfolobus solfataricus carboxypeptidase as a model enzyme. Biochim Biophys Acta 1764:563–572. doi:10.1016/j.bbapap.2005.12.007 PubMedGoogle Scholar
  111. Oger PM, Cario A (2013) Adaptation of the membrane in Archaea. Biophys Chem. doi:10.1016/j.bpc.2013.06.020 PubMedGoogle Scholar
  112. Oger PM, Jebbar M (2010) The many ways of coping with pressure. Res Microbiol 161:799–809. doi:10.1016/j.resmic.2010.09.017 PubMedGoogle Scholar
  113. Ohmae E, Tatsuta M, Abe F et al (2008) Effects of pressure on enzyme function of Escherichia coli dihydrofolate reductase. Biochim Biophys Acta 1784:1115–1121. doi:10.1016/j.bbapap.2008.04.005 PubMedGoogle Scholar
  114. Ohmae E, Murakami C, Tate S et al (2012) Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli. Biochim Biophys Acta 1824:511–519. doi:10.1016/j.bbapap.2012.01.001 PubMedGoogle Scholar
  115. Orcutt BN, Bach W, Becker K et al (2011) Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J 5:692–703. doi:10.1038/ismej.2010.157 PubMedCentralPubMedGoogle Scholar
  116. Page A, Juniper S, Olagnon M et al (2004) Microbial diversity associated with a Paralvinella sulfincola tube and the adjacent substratum on an active deep-sea vent chimney. Geobiology 2:225–238Google Scholar
  117. Paull CK, Hecker B, Commeau R et al (1984) Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science 226:965–967Google Scholar
  118. Refaee M, Tezuka T, Akasaka K, Williamson MP (2003) Pressure-dependent Changes in the solution structure of hen egg-white lysozyme. J Mol Biol 327:857–865. doi:10.1016/S0022-2836(03)00209-2 PubMedGoogle Scholar
  119. Reysenbach AL, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Env Microbiol 66:3798–3806Google Scholar
  120. Reysenbach AL, Gotz D, Banta A et al (2002) Expanding the distribution of the Aquificales to the deep-sea vents on Mid-Atlantic ridge and central Indian Ocean ridge. Cah Biol Mar 43:425–428Google Scholar
  121. Robb FT, Clark DS (1999) Adaptation of proteins from hyperthermophiles to high pressure and high temperature. J Mol Microbiol Biotechnol 1:101–105PubMedGoogle Scholar
  122. Roche J, Caro JA, Norberto DR et al (2012) Cavities determine the pressure unfolding of proteins. Proc Natl Acad Sci USA 109:6945–6950. doi:10.1073/pnas.1200915109 PubMedCentralPubMedGoogle Scholar
  123. Rosenbaum E, Gabel F, Durá MA et al (2012) Effects of hydrostatic pressure on the quaternary structure and enzymatic activity of a large peptidase complex from Pyrococcus horikoshii. Arch Biochem Biophys 517:104–110. doi:10.1016/j.abb.2011.07.017 PubMedGoogle Scholar
  124. Rouget J-B, Aksel T, Roche J et al (2011) Size and Sequence and the Volume Change of Protein Folding. J Am Chem Soc 133:6020–6027. doi:10.1021/ja200228w.Size PubMedCentralPubMedGoogle Scholar
  125. Roussel EG, Konn C, Charlou JL et al (2011) Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. FEMS Microbiol Ecol 77:647–665. doi:10.1111/j.1574-6941.2011.01161.x PubMedGoogle Scholar
  126. Russell NJ, Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria–a dogma rewritten. Microbiology 145(Pt 4):767–779PubMedGoogle Scholar
  127. Santos H, da Costa MS (2001) Organic solutes from thermophiles and hyperthermophiles. Methods Enzym 334:302–315Google Scholar
  128. Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Env Microbiol 4:501–509Google Scholar
  129. Sawle L, Ghosh K (2011) How do thermophilic proteins and proteomes withstand high temperature? Biophys J 101:217–227PubMedCentralPubMedGoogle Scholar
  130. Schrenk M, Kelley D, Bolton S, Baross J (2004) Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Env Microbiol 6:1086–1095Google Scholar
  131. Shimada H, Nemoto N, Shida Y et al (2008) Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol 190:5404–5411PubMedCentralPubMedGoogle Scholar
  132. Sinensky M (1971) Temperature control of phospholipid biosynthesis in Escherichia coli. J Bacteriol 106:449–455PubMedCentralPubMedGoogle Scholar
  133. Sinensky M (1974) Homeoviscous adaptation—Homerostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525PubMedCentralPubMedGoogle Scholar
  134. Sprott GD, Meloche M, Richards JC (1991) Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J Bacteriol 173:3907–3910PubMedCentralPubMedGoogle Scholar
  135. Stewart LC, Kates M, Ekiel IH, Smith ICP (1990) Molecular order and dynnamics of diphytanylglycerol phospholipids - A 2H NMR and 31P NMR study. Chem Phys Lipids 54:115–129Google Scholar
  136. Sun MM, Tolliday N, Vetriani C et al (1999) Pressure-induced thermostabilization of glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Protein Sci 8:1056–1063. doi:10.1110/ps.8.5.1056 PubMedCentralPubMedGoogle Scholar
  137. Suzuki Y, Sasaki T, Suzuki M et al (2005) Novel chemoautotrophic endosymbiosis between a member of the Epsilonproteobacteria and the hydrothermal-vent gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean. Appl Env Microbiol 71:5440–5450. doi:10.1128/AEM.71.9.5440-5450.2005 Google Scholar
  138. Sylvan JB, Pyenson BC, Rouxel O et al (2012) Time-series analysis of two hydrothermal plumes at 9°50′N East Pacific Rise reveals distinct, heterogeneous bacterial populations. Geobiology 10:178–192. doi:10.1111/j.1472-4669.2011.00315.x PubMedGoogle Scholar
  139. Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297PubMedCentralPubMedGoogle Scholar
  140. Takai K, Horikoshi K (2000) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17PubMedGoogle Scholar
  141. Takai K, Nakamura K (2011) Archaeal diversity and community development in deep-sea hydrothermal vents. Curr Opin Microbiol 14:282–291. doi:10.1016/j.mib.2011.04.013 PubMedGoogle Scholar
  142. Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50(Pt 2):489–500PubMedGoogle Scholar
  143. Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of archaea in a black smoker chimney structure. Appl Env Microbiol 67:3618–3629. doi:10.1128/AEM.67.8.3618-3629.2001 Google Scholar
  144. Takai K, Nakamura K, Toki T et al (2008) Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954. doi:10.1073/pnas.0712334105 PubMedCentralPubMedGoogle Scholar
  145. Takai K, Miyazaki M, Hirayama H et al (2009) Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol 11:1983–1997. doi:10.1111/j.1462-2920.2009.01921.x PubMedGoogle Scholar
  146. Teske A, Hinrichs K, Edgcomb V et al (2002) Microbial diversity of hydrothermal sediments in the Guaymas basin: evidence for anaerobic methanotrophic communities †. Appl Environ Microbiol 68:1994–2007. doi: 10.1128/AEM.68.4.1994 PubMedCentralPubMedGoogle Scholar
  147. Uda I, Sugai A, Itoh YH, Itoh T (2001) Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids 36:103–105PubMedGoogle Scholar
  148. Uda Y, Sugai A, Itoh YH, Itoh T (2004) Variation in molecular species of core lipids from the order Thermoplasmales strains depends on the growth temperature. J Oleo Sci 53:399–404Google Scholar
  149. Van de Vossenberg J, Driessen AJM, da Costa MS, Konings WN (1999) Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim Biophys Acta-Biomembr 1419:97–104Google Scholar
  150. Van Dover CL, German CR, Speer KG et al (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295:1253–1257. doi:10.1126/science.1067361 PubMedGoogle Scholar
  151. Vannier P, Marteinsson VT, Fridjonsson OH et al (2011) Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP. J Bacteriol 193:1481–1482. doi:10.1128/JB.01490-10 PubMedCentralPubMedGoogle Scholar
  152. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedCentralPubMedGoogle Scholar
  153. Von Damm KL (2000) Chemistry of hydrothermal vent fluids from 9 degrees-10 degrees N, East Pacific Rise: “Time zero”, the immediate posteruptive period. J Geophys Res Earth 105:11203–11222. doi:10.1029/1999jb900414 Google Scholar
  154. Vreeland RH (1987) Mechanisms of halotolerance in microorganisms. Crit Rev Microbiol 14:311–356. doi:10.3109/10408418709104443 PubMedGoogle Scholar
  155. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedCentralPubMedGoogle Scholar
  156. Winter R (2002) Effect of lipid chain length, temperature, pressure and composition on the lateral organisation and phase behavior of lipid bilayer/gramicidin mixtures. Biophys J 82:153A–153AGoogle Scholar
  157. Winter R, Jeworrek C (2009) Effect of pressure on membranes. Soft Matter 5:3157–3173Google Scholar
  158. Xu Y, Nogi Y, Kato C, Liang Z, Rüger HJ, De Kegel D, Glansdorff N (2003) Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol 53(2):527–532PubMedGoogle Scholar
  159. Yamauchi K (1993) Doi K, Yoshida Y, Kinoshita M Archaebacterial lipids: highly proton-impermeable membranes from 1,2-diphytanyl-sn-glycero-3- phosphocholine. BiochimBiophysActa 1146:178–182Google Scholar
  160. Yano Y, Nakayama A, Ishihara K, Saito H (1998) Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Env Microbiol 64:479–485Google Scholar
  161. Yayanos AA, Dietz AS, Vanboxtel R (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810PubMedGoogle Scholar
  162. Yayanos AA, Dietz AS, Van Boxtel R (1981) Obligately barophilic bacterium from the Mariana trench. Proc Natl Acad Sci USA 78:5212–5215PubMedCentralPubMedGoogle Scholar
  163. Zeng X, Birrien JL, Fouquet Y et al (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3:873–876. doi:10.1038/ismej.2009.21 PubMedGoogle Scholar
  164. Zeng X, Zhang X, Jiang L et al (2012) Palaeococcus pacificus sp. nov., a novel archaeon from a deep-sea hydrothermal sediment. Int J Syst Evol Microbiol 63:2155–2159. doi:10.1099/ijs.0.044487-0 PubMedGoogle Scholar
  165. Zeng X, Zhang X, Jiang L, Alain A, Jebbar M, Shao Z (2013) Palaeococcus pacificus sp. nov., a novel archaeon from a deep-sea hydrothermal sediment. IJSEM 63:2155–2159PubMedGoogle Scholar
  166. Zeng X, Zhang Z, Li X et al (2015) Anoxybacter fermentans gen. nov., sp. nov., a piezophilic, thermophilic, anaerobic, fermentative bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65:710–715PubMedGoogle Scholar
  167. Zhao W, Zeng X, Xiao X (2015) Thermococcus eurythermalis sp. nov., a conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin. Int J Syst Evol Microbiol 65:30–35PubMedGoogle Scholar
  168. Zobell CE, Johnson FH (1949) The Influence of Hydrostatic Pressure on the Growth and Viability of Terrestrial and Marine Bacteria. J Bacteriol 57:179–189PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Mohamed Jebbar
    • 1
    • 2
    • 3
    • 8
  • Bruno Franzetti
    • 4
    • 5
    • 6
  • Eric Girard
    • 4
    • 5
    • 6
  • Philippe Oger
    • 7
  1. 1.Université de Bretagne Occidentale, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM)PlouzanéFrance
  2. 2.CNRS, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Institut Universitaire Européen de la Mer (IUEM)PlouzanéFrance
  3. 3.Ifremer, UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Brest-IroisePlouzanéFrance
  4. 4.Centre National de la Recherche Scientifique, IBSGrenobleFrance
  5. 5.Université Grenoble Alpes, Institut de Biologie Structurale (IBS)GrenobleFrance
  6. 6.Commissariat à l’Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, IBSGrenobleFrance
  7. 7.CNRS, UMR 5276, Ecole Normale Supérieure de LyonLyonFrance
  8. 8.Laboratoire de Microbiologie des Environnements Extrêmes (UMR 6197), Institut Universitaire Européen de la Mer (IUEM), Technopole Brest-IroisePlouzanéFrance

Personalised recommendations