, Volume 19, Issue 3, pp 631–642 | Cite as

Microbial abundance and community structure in a melting alpine snowpack

  • Anna Lazzaro
  • Andrea Wismer
  • Martin Schneebeli
  • Isolde Erny
  • Josef Zeyer
Original Paper


Snowmelt is a crucial period for alpine soil ecosystems, as it is related to inputs of nutrients, particulate matter and microorganisms to the underlying soil. Although snow-inhabiting microbial communities represent an important inoculum for soils, they have thus far received little attention. The distribution and structure of these microorganisms in the snowpack may be linked to the physical properties of the snowpack at snowmelt. Snow samples were taken from snow profiles at four sites (1930–2519 m a.s.l.) in the catchment of the Tiefengletscher, Canton Uri, Switzerland. Microbial (Archaea, Bacteria and Fungi) communities were investigated through T-RFLP profiling of the 16S and 18S rRNA genes, respectively. In parallel, we assessed physical and chemical parameters relevant to the understanding of melting processes. Along the snow profiles, density increased with depth due to compaction, while other physico-chemical parameters, such as temperature and concentrations of DOC and soluble ions, remained in the same range (e.g. <2 mg DOC L−1, 5–30 μg NH4 +-N L−1) in all samples at all sites. Along the snow profiles, no major change was observed either in cell abundance or in bacterial and fungal diversity. No Archaea could be detected in the snow. Microbial communities, however, differed significantly between sites. Our results show that meltwater rearranges soluble ions and microbial communities in the snowpack.


Snow bacteria Snow fungi T-RFLP 16S rRNA gene Snow physics 



We acknowledge Martin Schroth, Alessandro Franchini and Marco Meola for exchange of ideas and for help in the field. We thank Tobias Jonas at WSL Davos for providing meteorological data. We are extremely grateful to Frederik Hammes at EAWAG (Dübendorf, Switzerland) for support on flow cytometry. T-RFLP profiling was performed at the Genetic diversity centre (GDC) of ETH Zurich. TC analysis of the glass fibre filters was provided by Bachema AG (Schlieren, Switzerland). This project was internally funded by ETH Zurich.

Supplementary material

792_2015_744_MOESM1_ESM.doc (482 kb)
Supplementary material 1 (DOC 482 kb)


  1. Amato P, Hennebelle R, Magand O, Sancelme M, Delort AM, Barbante C, Boutron C, Ferrari C (2007) Bacterial characterization of the snow cover at Spizberg, Svalbard. FEMS Microbiol Ecol 59:255–264CrossRefPubMedGoogle Scholar
  2. Bales RC, Sommerfeld RE, Kebler DG (1990) Ionic tracer movement through a Wyoming snowpack. Atmos Environ 24:2749–2758CrossRefGoogle Scholar
  3. Bauer H, Kaspel-Giebl A, Löflund M, Giebl H, Hitzenberger R, Zibuschka F, Puxbaum H (2002) The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos Res 64:109–119CrossRefGoogle Scholar
  4. Björkman MP, Zarsky JP, Kühnel R, Hodson A, Sattler B, Psenner R (2014) Microbial cell retention in a melting high Arctic snowpack, Svalbard. Arct Antarct Alp Res 46:471–482CrossRefGoogle Scholar
  5. Blackwood CB, Hudleston D, Zak DR, Buyer JS (2007) Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl Environ Microbiol 73:5276–5283CrossRefPubMedCentralPubMedGoogle Scholar
  6. Borneman J, Hardin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 66:4356–4360CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bowman DW (1992) Inputs and storage of nitrogen in winter snowpack in an alpine ecosystem. Arct Antarct Alp Res 24:211–215CrossRefGoogle Scholar
  8. Brankatschk R, Töwe S, Kleineidam K, Schloter M, Zeyer J (2010) Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J 5:1025–1037CrossRefPubMedCentralPubMedGoogle Scholar
  9. Burrows SM, Elbert W, Lawrence MG, Pöschl U (2009) Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263–9280CrossRefGoogle Scholar
  10. Christner BC, Morris CE, Foreman CM, Cai R, Sands DC (2008) Ubiquity of biological ice nucleators in snowfall. Science 319:1214CrossRefPubMedGoogle Scholar
  11. Feng X, Kirchner JW, Renshaw CE, Osterhuber RS, Klaue B, Taylor S (2001) A study of solute transport mechanisms using rare earth element tracers and artificial rainstorms on snow. Water Resour Res 37:1425–1435CrossRefGoogle Scholar
  12. Grannas AM, Jones AE, Dibb J et al (2007) An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos Chem Phys 7:4329–4373CrossRefGoogle Scholar
  13. Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in high Arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243CrossRefPubMedCentralPubMedGoogle Scholar
  14. Hauptmann AL, Stibal M, Bælum J, Sicheritz-Pontén T, Brunak S, Bowman JS, Hansen LH, Jacobsen CSm, Blom N (2014) Bacterial diversity in snow on north pole ice floes. Extremophiles 18:945–951CrossRefPubMedCentralPubMedGoogle Scholar
  15. Hell K, Edwards A, Zarsky J, Podmirseg SM, Girdwood S, Pachebat JA, Insam H, Sattler B (2013) The dynamic bacterial communities of a melting high arctic glacier snowpack. ISME J 7:1814–1826CrossRefPubMedCentralPubMedGoogle Scholar
  16. Horton RE (1935) Phenomena of the contact zone between the ground surface and a layer of melting snow. IAHS AISH Publ 23:545–561Google Scholar
  17. Jones HG (2001) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  18. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470CrossRefPubMedGoogle Scholar
  19. Kamande GM, Baah J, Cheng KJ, McAllister TA, Shelford JA (2000) Effects of Tween 60 and Tween 80 on protease activity, thiol group reactivity, protein adsorption, and cellulose degradation by rumen microbial enzymes. J Dairy Sci 83:536–542CrossRefPubMedGoogle Scholar
  20. Kim HR, Kim IH, Hou CT, Kwon KI, Shin BS (2010) Production of a novel cold-active lipase from Pichia lynferdii Y-7723. J Agric Food Chem 58:1322–1326CrossRefPubMedGoogle Scholar
  21. Körner C (1999) Alpine plant life. Springer, BerlinGoogle Scholar
  22. Larose C, Berger S, Ferrari C, Navarro Em Dommergue A, Schneider D, Vogel TM (2010) Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway. Extremophiles 14:05–212CrossRefGoogle Scholar
  23. Larose C, Dommergue A, Vogel TM (2013) The dynamic Arctic snow pack: an unexplored environment for microbial diversity and activity. Biology 2:317–330CrossRefPubMedCentralPubMedGoogle Scholar
  24. Lautenschlager K, Hwang C, Liu WT, Boon N, Köster O, Vrouwenvelder H, Egli T, Hammes F (2013) A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. Water Res 47:3015–3025CrossRefPubMedGoogle Scholar
  25. Lazzaro A, Abegg C, Zeyer J (2009) Bacterial community structure of glacier forefields of siliceous and calcareous bedrock. Eur J Soil Sci 60:860–870CrossRefGoogle Scholar
  26. Lee J, Nez VE, Feng X, Kirchner JW, Opsterhuber R, Renshaw CE (2008) A study of solute redistribution and transport in seasonal snowpack using natural and artificial tracers. J Hydrol 357:243–254CrossRefGoogle Scholar
  27. Legrand M, Preunkert S, Jourdain B, Guilhermet J, Faijn X, Alekhina I, Petit JR (2013) Water-soluble organic carbon in snow and ice deposited at Alpine, Greenland, and Antarctic sites: a critical review of available data and their atmospheric relevance. Clim Past 9:2195–2211CrossRefGoogle Scholar
  28. Liu Y, Yao T, Jiao N, Kang S, Xu B, Zeng Y, Huang S, Liu X (2009) Bacterial diversity in the snow over Tibetan Plateau glaciers. Extremophiles 13:411–423CrossRefPubMedGoogle Scholar
  29. Lo Giudice A, Michaud L, de Pascale D, De Domenico M, di Prisco G, Fani R, Bruni V (2006) Lipolytic activity of Antarctic cold-adapted marine bacteria (Terra Nova Bay, Ross Sea). J Appl Microbiol 101:1039–1048CrossRefPubMedGoogle Scholar
  30. Lovett GM, Kinsman JD (1990) Atmospheric pollutant deposition to high-elevation ecosystems. Atmos Environ 11:2767–2786 (part A, general topics)Google Scholar
  31. Lütz C (2010) Cell physiology of plants growing in cold environments. Protoplasma 244:53–73CrossRefPubMedGoogle Scholar
  32. Maccario L, Vogel TM, Larose C (2014) Potential drivers of microbial community structure and function in Arctic spring snow. Front Microbiol 5:1–10CrossRefGoogle Scholar
  33. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361CrossRefPubMedGoogle Scholar
  34. Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14CrossRefGoogle Scholar
  35. Mayr C, Miller M, Insam H (1999) Elevated CO alters community-level physiological profiles and enzyme activities in alpine grassland. J Microbiol Methods 36:35–43CrossRefPubMedGoogle Scholar
  36. McNeill VF, Grannas AM, Abbatt JPD, Ammann M, Ariya P, Bartels-Rausch T, Domine F et al (2012) Organics in environmental ices: sources, chemistry, and impacts. Atmos Chem Phys 12:9653–9678CrossRefGoogle Scholar
  37. Meola M, Lazzaro A, Zeyer J (2014) Diversity, resistance, and resilience of the bacterial communities at two alpine glacier forefields after a reciprocal soil transplantation. Environ Microbiol 16:1918–1934CrossRefPubMedGoogle Scholar
  38. Meyer T, Wania F (2008) Organic contaminant amplification during snowmelt. Water Res 42:1847–1865CrossRefPubMedGoogle Scholar
  39. Meyer AF, Lipson DA, Martin AP, Shadt CW, Schmidt SK (2004) Molecular and Metabolic characterization of cold-tolerant alpine soil Pseudomonas sensu stricto. Appl Environ Microbiol 70:483–489CrossRefPubMedCentralPubMedGoogle Scholar
  40. Mladenov N, Williams MW, Schmidt SK, Cawley K (2012) Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains. Biogeoscience 9:3337–3355CrossRefGoogle Scholar
  41. Møller AK, Da S, Al-Soud A, Sørensen SJ, Kroer N (2013) Bacterial community structure in high-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation. Pol Res 32:17390. doi:10.3402/polar.v32i0.17390Google Scholar
  42. Mulvaney RL (1996) Nitrogen-inorganic forms. In: American Society of Agronomy (ed) Methods of soil analysis, part 3, pp 1123–1184. Soil Science Society of America, MadisonGoogle Scholar
  43. Oksanen J, Kindt R, O’Hara RB (2005) Vegan: community ecology package version 1, pp 6–9. http://cc.oulu.fi/~jarioksa/
  44. Pinzer BR, Medebach A, Limbach HJ, Dubois C, Stampanoni M, Schneebeli M (2012) 3D-characterization of three-phase systems using X-ray tomography: tracking the microstructural evolution in ice cream. Soft Matter 8:4584CrossRefGoogle Scholar
  45. Polymenakou PN (2012) Atmosphere: a source of pathogenic or beneficial microbes? Atmosphere 3:87–102CrossRefGoogle Scholar
  46. Pomeroy JW, Brun E (2001). In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Physical properties of snow. Snow ecology: an interdisciplinary examination of snow-covered ecosystems, pp 45–118. Cambridge University Press, CambridgeGoogle Scholar
  47. Pomeroy JW, Jones HG, Tranter M, Lilbaek G (2005) Snow and glacier hydrology. In: Anderson MG, Mcdonnell JJ (eds) Encyclopedia of hydrological sciences. Wiley, Oxford, pp 2525–2538Google Scholar
  48. Remias D, Karsten U, Lütz C, Leya T (2010) Physiological and morphological processes in the alpine sow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243:73–86CrossRefPubMedGoogle Scholar
  49. Reysenbach AL, Longnecker K, Kirshte J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a mid-Atlantic ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806CrossRefPubMedCentralPubMedGoogle Scholar
  50. Runa A, Grannas AM, Willoughby AS, Sleighter RL, Thamban M, Hatcher PG (2014) Origin and sources of dissolved organic matter in snow on the east Antarctic ice sheet. Environ Sci Technol 48:6151–6159CrossRefGoogle Scholar
  51. Schneebeli M (1995) In: Association of the Hydrological Sciences (eds) Development and stability of preferential flow paths in a layered snowpack, vol 22, pp 89–96. IAHS Publications-Series of Proceedings and Reports-Intern, WallingfordGoogle Scholar
  52. Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol 71:123–130CrossRefPubMedCentralPubMedGoogle Scholar
  53. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526CrossRefPubMedCentralPubMedGoogle Scholar
  54. Stelmach IP, De Oliveira Elias S, Lorenz Simöes F, Cardia Simöes J, Macedo AJ (2012) Functional diversity of microbial communities in soils in the vicinity of Wanda Glacier, Antarctic Peninsula. Micro Environ 27:200–203CrossRefGoogle Scholar
  55. Steltzer H, Landry C, Painter TH, Anderson J, Ayres E (2009) Biological consequences of earlier snowmelt from desert dust deposition in alpine landscapes. PNAS 106:11629–11634. doi: 10.1073/pnas.0900758106 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Stibal M, Bælum J, Holben WH, Sørensen SR, Jensen A, Jacobsen CS (2012) Microbial degradation of 2, 4-dichlorophenoxyacetic acid on the Greenland ice sheet. Appl Environ Microbiol 78:5070CrossRefPubMedCentralPubMedGoogle Scholar
  57. Tamaki H, Hanada S, Kamagata Y, Nakamura K, Nomura N, Nakano K, Matsumura M (2003) Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Sist Evol Microbiol 53:519–526CrossRefGoogle Scholar
  58. Techel F, Pielmeier C, Schneebeli M (2011) Microstructural resistance of snow following first rewetting. Cold Reg Sci Technol 65:382–391CrossRefGoogle Scholar
  59. Thimonier A, Schmitt M, Waldner P, Rihm B (2005) Atmospheric deposition on swiss long-term forest ecosystem research (LWF) plots. Environ Monit Assess 104:81–118CrossRefPubMedGoogle Scholar
  60. Tranter M, Davies TD, Abrahams PW, Blackwood I, Brimblecombe P, Vincent CE (1986) Spatial variability in the chemical composition of snowcover in a small, remote, Scottish catchment. Atmos Environ 21:853–862CrossRefGoogle Scholar
  61. Waldner PA, Schneebeli M, Schulze-Zimmermann U, Flühler H (2004) Effect of snow structure on water flow and solute transport. Hydrol Proc 18:1271–1290CrossRefGoogle Scholar
  62. Walter B, Horender S, Gromke C, Lehning M (2013) Measurements of the pore-scale water flow through snow using fluorescent particle tracking velocimetry (FPTV). Water Resour Res. doi: 10.1002/2013WR013960 Google Scholar
  63. Williams MW, Seibold C, Chowanski K (2009) Storage and release of solutes from a subalpine seasonal snowpack: soil and stream water response, Niwot Ridge, Colorado. Biogeochemistry 95:77–94CrossRefGoogle Scholar
  64. Winsley T, van Dorst JM, Brown MV, Ferrari BC (2012) Capturing greater 16S rRNA gene sequence diversity within the domain bacteria. Appl Environ Microbiol 78:5938–5941CrossRefPubMedCentralPubMedGoogle Scholar
  65. Womack AM, Bohannan BJ, Green JL (2010) Biodiversity and biogeography of the atmosphere. Philos Trans R Soc B 365:3645–3653CrossRefGoogle Scholar
  66. Xiang SR, Shang TC, Chen Y, Yao TD (2009) Deposition and postdeposition mechanisms as possible drivers of microbial population variability in glacier ice. FEMS Microbiol Ecol 70:165–176CrossRefGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Anna Lazzaro
    • 1
  • Andrea Wismer
    • 1
  • Martin Schneebeli
    • 2
  • Isolde Erny
    • 1
  • Josef Zeyer
    • 1
  1. 1.Institute of Biogeochemistry and Pollutant DynamicsETH ZurichZurichSwitzerland
  2. 2.WSL Institute for Snow and Avalanche Research SLFDavosSwitzerland

Personalised recommendations