, Volume 19, Issue 2, pp 525–537 | Cite as

Culturable diversity of aerobic halophilic archaea (Fam. Halobacteriaceae) from hypersaline, meromictic Transylvanian lakes

  • Andreea Baricz
  • Adorján Cristea
  • Vasile Muntean
  • Gabriela Teodosiu
  • Adrian-Ştefan Andrei
  • Imola Molnár
  • Mircea Alexe
  • Elena Rakosy-Tican
  • Horia Leonard Banciu
Original Paper


Perennially stratified salt lakes situated in the Transylvanian Basin (Central Romania) were surveyed for the diversity of culturable halophilic archaea (Fam. Halobacteriaceae). The physical and chemical characteristics of the waters indicated that all the investigated lakes were meromictic and neutral hypersaline. Samples collected from upper, intermediate, and deeper water layers and sediments were used for the isolation of halophilic strains followed by 16S rRNA gene-based identification and phenotypic characterization. The phylogenetic analysis of the 16S rRNA gene sequences revealed that all 191 isolates reported in this study and 43 strains previously isolated were affiliated with the family Halobacteriaceae and classified to 18 genera. Haloferax was the most frequently isolated genus (~47 %), followed by Halobacterium spp. (~12 %), and Halorubrum spp. (~11 %). Highest culturable diversity was detected in Brâncoveanu Lake, the oldest and saltiest of all studied lakes, while the opposite was observed in the most stable and least human-impacted Fără Fund Lake. One strain from Ursu Lake might possibly constitute a novel Halorubrum species as shown by phylogenetic analysis. Several haloarchaeal taxa recently described in Asian (i.e., Iran, China) saline systems were also identified as inhabiting the Transylvanian salt lakes thus expanding our knowledege on the geographic distribution of Halobacteriaceae.


Culturable haloarchaea Genus-level diversity Haloferax spp. Meromictic lake Site-specific diversity 



This work was supported by a Grant of the Romanian National Authority for Scientific Research, CNCS–UEFIS-CDI, project number PN-II-ID-PCE-2011-3-0546. Andreea Baricz was partially funded by a grant from the Romanian Ministry of National Education, project PN 09-360201. Adrian-Ştefan Andrei was supported by a PhD scholarship financed by POSDRU/159/1.5/S/132400. Gabriela Teodosiu was funded by project no. RO1567-IBB05/2014 from the Institute of Biology Bucharest of Romanian Academy. We are grateful to Daniela Buta (Ocna Sibiului), Dr. Ovidiu Mera (Turda), and Nagy Fülop János (Sovata) for the permission to enter the study areas.

Supplementary material

792_2015_738_MOESM1_ESM.doc (202 kb)
Supplementary material 1 (DOC 202 kb)


  1. Amoozegar MA, Makhdoumi-Kakhki A, Shahzadeh Fazeli SA, Azarbaijani R, Ventosa A (2012) Halopenitus persicus gen. nov., sp. nov., an archaeon from an inland salt lake. Int J Syst Evol Microbiol 62:1932–1936CrossRefPubMedGoogle Scholar
  2. Andrei AŞ, Banciu HL, Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9CrossRefPubMedGoogle Scholar
  3. Baricz A, Coman C, Andrei AȘ, Muntean V, Keresztes ZG, Păușan M, Alexe M, Banciu HL (2014) Spatial and temporal distribution of archaeal diversity in meromictic, hypersaline Ocnei Lake (Transylvanian Basin, Romania). Extremophiles 18:399–413CrossRefPubMedGoogle Scholar
  4. Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46Google Scholar
  5. Borsodi AK, Felföldi T, Máthé I, Bognár V, Knáb M, Krett G, Jurecska L, Tóth EM, Márialigeti K (2013) Phylogenetic diversity of bacterial and archaeal communities inhabiting the saline Lake Red located in Sovata, Romania. Extremophiles 17:87–98CrossRefPubMedGoogle Scholar
  6. Bowman JP, Rea SM, McCammon SA, McMeekin TA (2000) Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ Microbiol 2:227–237CrossRefPubMedGoogle Scholar
  7. Castillo AM, Gutiérrez MC, Kamekura M, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2007) Halovivax ruber sp. nov., an extremely halophilic archaeon isolated from Lake Xilinhot, Inner Mongolia, China. Int J Syst Evol Microbiol 57:1024–1027CrossRefPubMedGoogle Scholar
  8. Cui HL, Tohty D, Feng J, Zhou PJ, Liu SJ (2006) Natronorubrum aibiense sp. nov., an extremely halophilic archaeon isolated from Aibi salt lake in Xin-Jiang, China, and emended description of the genus Natronorubrum. Int J Syst Evol Microbiol 56:1515–1517CrossRefPubMedGoogle Scholar
  9. Cui HL, Li XY, Gao X, Xu XW, Zhou YG, Liu HC, Oren A, Zhou PJ (2010) Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:2089–2093CrossRefPubMedGoogle Scholar
  10. Cui HL, Mou YZ, Yang X, Zhou YG, Liu HC, Zhou PJ (2012) Halorubellus salinus gen. nov., sp. nov. and Halorubellus litoreus sp. nov., novel halophilic archaea isolated from a marine solar saltern. Syst Appl Microbiol 35:30–34CrossRefPubMedGoogle Scholar
  11. Dimitriu PA, Pinkart HC, Peyton BM, Mormile MR (2008) Spatial and temporal patterns in the microbial diversity of a meromictic soda lake in Washington State. Appl Environ Microbiol 74:4877–4888PubMedCentralCrossRefPubMedGoogle Scholar
  12. Elevi Bardavid R, Khristo P, Oren A (2008) Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 12:5–14CrossRefPubMedGoogle Scholar
  13. Enache M, Itoh T, Kamekura M, Teodosiu G, Dumitru L (2007) Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake. Int J Syst Evol Microbiol 57:393–397CrossRefPubMedGoogle Scholar
  14. Fendrihan S, Dornmayr-Pfaffenhuemer M, Gerbl FW, Holzinger A, Grösbacher M, Briza P, Erler A, Gruber C, Plätzer K, Stan-Lotter H (2012) Spherical particles of halophilic archaea correlate with exposure to low water activity—implications for microbial survival in fluid inclusions of ancient halite. Geobiology 10:424–433PubMedCentralCrossRefPubMedGoogle Scholar
  15. Goh F, Leuko S, Allen MA, Bowman JP, Kamekura M, Neilan BA, Burns BP (2006) Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int J Syst Evol Microbiol 56:1323–1329CrossRefPubMedGoogle Scholar
  16. Hammer Ø, Harper DAT, Ryan P (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9.
  17. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042PubMedCentralCrossRefPubMedGoogle Scholar
  18. Keresztes ZG, Felföldi T, Somogyi B, Székely G, Dragoș N, Márialigeti K, Bartha C, Vörös L (2012) First record of picophytoplankton diversity in Central European hypersaline lakes. Extremophiles 16:759–769CrossRefPubMedGoogle Scholar
  19. Koizumi Y, Kojima H, Oguri K, Kitazato H, Fukui M (2004) Vertical and temporal shifts in microbial communities in the water column and sediment of saline meromictic Lake Kaiike (Japan), as determined by a 16S rDNA-based analysis, and related to physicochemical gradients. Environ Microbiol 6:622–637CrossRefPubMedGoogle Scholar
  20. Liu BB, Tang SK, Cui HL, Zhang YG, Li L, Zhang YM, Zhang LL, Li WJ (2013) Halopelagius fulvigenes sp. nov., a halophilic archaeon isolated from a lake. Int J Syst Evol Microbiol 63:2192–2196CrossRefPubMedGoogle Scholar
  21. Luque R, González-Domenech CM, Llamas I, Quesada E, Béjar V (2012) Diversity of culturable halophilic archaea isolated from Rambla Salada, Murcia (Spain). Extremophiles 16:205–213CrossRefPubMedGoogle Scholar
  22. Makhdoumi-Kakhki A, Amoozegar MA, Bagheri M, Ramezani M, Ventosa A (2012a) Haloarchaeobius iranensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline lake. Int J Syst Evol Microbiol 62:1021–1026CrossRefPubMedGoogle Scholar
  23. Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B, Pasic L, Ventosa A (2012b) Prokaryotic diversity in Aran–Bidgol salt lake, the largest hypersaline playa in Iran. Microbes Environ 27:87–93PubMedCentralCrossRefPubMedGoogle Scholar
  24. Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A (2012c) Halovenus aranensis gen. nov., sp. nov., an extremely halophilic archaeon from Aran–Bidgol salt lake. Int J Syst Evol Microbiol 62:1331–1336CrossRefPubMedGoogle Scholar
  25. Máthé I, Borsodi AK, Tóth EM, Felföldi T, Jurecska L, Krett G, Kelemen Z, Elekes E, Barkács K, Márialigeti K (2014) Vertical physico-chemical gradients with distinct microbial communities in the hypersaline and heliothermal Lake Ursu (Sovata, Romania). Extremophiles 18:501–514CrossRefPubMedGoogle Scholar
  26. McGenity TJ, Gemmell RT, Grant WD (1998) Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol 48:1187–1196CrossRefPubMedGoogle Scholar
  27. Muntean V, Crișan D, Kiss S, Drăgan-Bularda M (1996) Enzymological classification of salt lakes in Romania. Int J Salt Lake Res 5:35–44CrossRefGoogle Scholar
  28. Oh D, Porter K, Russ B, Burns D, Dyall-Smith M (2010) Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles 14:161–169PubMedCentralCrossRefPubMedGoogle Scholar
  29. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834CrossRefPubMedGoogle Scholar
  30. Oren A (2014) Taxonomy of halophilic archaea: current status and future challenges. Extremophiles 18:825–834CrossRefPubMedGoogle Scholar
  31. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Evol Microbiol 47:233–238Google Scholar
  32. Oren A, Elevi R, Watanabe S, Ihara K, Corcelli A (2002) Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Syst Evol Microbiol 52:1831–1835PubMedGoogle Scholar
  33. Ozcan B, Ozcengiz G, Coleri A, Cokmus C (2007) Diversity of halophilic archaea from six hypersaline environments in Turkey. J Microbiol Biotechnol 17:985–992PubMedGoogle Scholar
  34. Papke RT, Zhaxybayeva O, Feil EJ, Sommerfeld K, Muise D, Doolittle WF (2007) Searching for species in haloarchaea. Proc Natl Acad Sci USA 104:14092–14097PubMedCentralCrossRefPubMedGoogle Scholar
  35. Roh SW, Nam YD, Chang HW, Sung Y, Kim KH, Lee HJ, Oh HM, Bae JW (2007) Natronococcus jeotgali sp. nov., a halophilic archaeon isolated from shrimp jeotgal, a traditional fermented seafood from Korea. Int J Syst Evol Microbiol 57:2129–2131CrossRefPubMedGoogle Scholar
  36. Romano I, Poli A, Finore I, Huertas FJ, Gambacorta A, Pelliccione S, Nicolaus G, Lama L, Nicolaus B (2007) Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 57:1499–1503CrossRefPubMedGoogle Scholar
  37. Savage KN, Krumholz LR, Oren A, Elshahed MS (2007) Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57:19–24CrossRefPubMedGoogle Scholar
  38. Scholten JC, Joye SB, Hollibaugh JT, Murrell JC (2005) Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes. Microb Ecol 50:29–39CrossRefPubMedGoogle Scholar
  39. Shannon C, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, ChampaignGoogle Scholar
  40. Simpson EH (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  41. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  42. Ventosa A, Fernández AB, León MJ, Sánchez-Porro C, Rodriguez-Valera F (2014) The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 18:811–824CrossRefPubMedGoogle Scholar
  43. Yamauchi Y, Minegishi H, Echigo A, Shimane Y, Shimoshige H, Kamekura M, Itoh T, Doukyu N, Inoue A, Usami R (2013) Halarchaeum salinum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int J Syst Evol Microbiol 63:1138–1142CrossRefPubMedGoogle Scholar
  44. Youssef NH, Ashlock-Savage KN, Elshahed MS (2012) Phylogenetic diversities and community structure of members of the extremely halophilic archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol 78:1332–1344PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Andreea Baricz
    • 1
    • 2
  • Adorján Cristea
    • 1
  • Vasile Muntean
    • 1
  • Gabriela Teodosiu
    • 3
  • Adrian-Ştefan Andrei
    • 1
    • 4
  • Imola Molnár
    • 1
  • Mircea Alexe
    • 5
  • Elena Rakosy-Tican
    • 1
  • Horia Leonard Banciu
    • 1
    • 4
  1. 1.Department of Molecular Biology and Biotechnology, Faculty of Biology and GeologyBabeş-Bolyai UniversityCluj-NapocaRomania
  2. 2.National Institute of Research and Development for Biological Sciences (NIRDBS)Institute of Biological ResearchCluj-NapocaRomania
  3. 3.Institute of Biology Bucharest of the Romanian AcademyBucharestRomania
  4. 4.Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology CenterBabeş-Bolyai UniversityCluj-NapocaRomania
  5. 5.Faculty of GeographyBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations