Extremophiles

, Volume 19, Issue 2, pp 383–393 | Cite as

Characterization of Sphingomonas sp. JB13 exo-inulinase: a novel detergent-, salt-, and protease-tolerant exo-inulinase

  • Junpei Zhou
  • Mozhen Peng
  • Rui Zhang
  • Junjun Li
  • Xianghua Tang
  • Bo Xu
  • Junmei Ding
  • Yajie Gao
  • Junrong Ren
  • Zunxi Huang
Original Paper

Abstract

A glycoside hydrolase family 32 exo-inulinase gene was cloned from Sphingomonas sp. JB13 and expressed in Escherichia coli BL21 (DE3). The purified recombinant enzyme (rInuAJB13) showed an apparently optimal activity at pH 5.5 and 55 °C and remained activity at 10–70 °C. The addition of most metal ions and chemical reagents showed little or no effect (retaining more than 76.5 % activity) on the enzyme activity, notably the addition of surfactants SDS, CTAB, Tween 80, and Triton X-100. Most local liquid detergents, including Balin, Walch, Ariel, Tide, Tupperware, and Bluemoon, also showed little or no effect (retaining more than 77.8 % activity) on the enzyme activity. rInuAJB13 exhibited 135.3–163.6 % activity at the NaCl concentration of 1.0–4.5 M. After incubation with up to 57.0 mg mL−1 trypsin and 90.0 mg mL−1 proteinase K at 37 °C for 60 min (pH 7.2), rInuAJB13 retained more than 80 % of its initial activity. The enzyme presents a high proportion (28.0 %) of amino acid residues G, A, and V. This paper is the first to report a detergent-, salt-, and protease-tolerant exo-inulinase.

Keywords

Inulinase Salt Protease Detergent Sphingomonas 

Supplementary material

792_2014_724_MOESM1_ESM.doc (287 kb)
Supplementary material 1 (DOC 287 kb)

References

  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  2. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238PubMedCentralCrossRefPubMedGoogle Scholar
  3. Cao Y, Wang Y, Meng K, Bai Y, Shi P, Luo H, Yang P, Zhou Z, Zhang Z, Yao B (2009) A novel protease-resistant α-galactosidase with high hydrolytic activity from Gibberella sp. F75: gene cloning, expression, and enzymatic characterization. Appl Microbiol Biotechnol 83:875–884CrossRefPubMedGoogle Scholar
  4. Farias ME, Revale S, Mancini E, Ordonez O, Turjanski A, Cortez N, Vazquez MP (2011) Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean Puna. J Bacteriol 193:3686–3687PubMedCentralCrossRefPubMedGoogle Scholar
  5. Fontes C, Hall J, Hirst BH, Hazlewood GP, Gilbert HJ (1995) The resistance of cellulases and xylanases to proteolytic inactivation. Appl Microbiol Biotechnol 43:52–57CrossRefPubMedGoogle Scholar
  6. Ghazi S, Rooke JA, Galbraith H (2003) Improvement of the nutritive value of soybean meal by protease and α-galactosidase treatment in broiler cockerels and broiler chicks. Br Poult Sci 44:410–418CrossRefPubMedGoogle Scholar
  7. Gill PK, Manhas RK, Singh J, Singh P (2004) Purification and characterization of an exoinulinase from Aspergillus fumigatus. Appl Biochem Biotechnol 117:19–32CrossRefPubMedGoogle Scholar
  8. Gill PK, Manhas RK, Singh P (2006) Purification and properties of a heat-stable exoinulinase isoform from Aspergillus fumigatus. Bioresour Technol 97:894–902CrossRefPubMedGoogle Scholar
  9. Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84:1107–1115CrossRefPubMedGoogle Scholar
  10. Han YW (1990) Microbial Levan. Adv Appl Microbiol 35:171–194CrossRefPubMedGoogle Scholar
  11. Hung KS, Liu SM, Tzou WS, Lin FP, Pan CL, Fang TY, Sun KH, Tang SJ (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46:1257–1263CrossRefGoogle Scholar
  12. Jaswal SS, Sohl JL, Davis JH, Agard DA (2002) Energetic landscape of α-lytic protease optimizes longevity through kinetic stability. Nature 415:343–346CrossRefPubMedGoogle Scholar
  13. Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 25:165–212CrossRefGoogle Scholar
  14. Kim KY, Koo BS, Jo D, Kim SI (2004) Cloning, expression, and purification of exoinulinase from Bacillus sp. snu-7. J Microbiol Biotechnol 14:344–349Google Scholar
  15. Kobayashi T, Uchimura K, Deguchi S, Horikoshi K (2012) Cloning and sequencing of inulinase and β-fructofuranosidase genes of a deep-sea microbulbifer species and properties of recombinant enzymes. Appl Environ Microbiol 78:2493–2495PubMedCentralCrossRefPubMedGoogle Scholar
  16. Kuddus M, Ramteke PW (2012) Recent developments in production and biotechnological applications of cold-active microbial proteases. Crit Rev Microbiol 38:330–338CrossRefPubMedGoogle Scholar
  17. Kushi RT, Monti R, Contiero J (2000) Production, purification and characterization of an extracellular inulinase from Kluyveromyces marxianus var. bulgaricus. J Ind Microbiol Biotechnol 25:63–69CrossRefGoogle Scholar
  18. Kwon YM, Kim HY, Choi YJ (2000) Cloning and characterization of Pseudomonas mucidolens exoinulinase. J Microbiol Biotechnol 10:238–243Google Scholar
  19. Liebl W, Brem D, Gotschlich A (1998) Analysis of the gene for β-fructosidase (invertase, inulinase) of the hyperthermophilic bacterium Thermotoga maritima, and characterisation of the enzyme expressed in Escherichia coli. Appl Microbiol Biotechnol 50:55–64CrossRefPubMedGoogle Scholar
  20. Lima DM, Fernandes P, Nascimento DS, Ribeiro R, de Assis SA (2011) Fructose syrup: a biotechnology asset. Food Technol Biotechnol 49:424–434Google Scholar
  21. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666CrossRefGoogle Scholar
  22. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98CrossRefPubMedGoogle Scholar
  23. Manning M, Colon W (2004) Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward β-sheet structure. Biochemistry 43:11248–11254CrossRefPubMedGoogle Scholar
  24. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83CrossRefPubMedGoogle Scholar
  25. Miller TR, Delcher AL, Salzberg SL, Saunders E, Detter JC, Halden RU (2010) Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J Bacteriol 192:6101–6102PubMedCentralCrossRefPubMedGoogle Scholar
  26. Morgavi DP, Beauchemin KA, Nsereko VL, Rode LM, McAllister TA, Iwaasa AD, Wang Y, Yang WZ (2001) Resistance of feed enzymes to proteolytic inactivation by rumen microorganisms and gastrointestinal proteases. J Anim Sci 79:1621–1630PubMedGoogle Scholar
  27. Moriyama S, Akimoto H, Suetsugu N, Kawasaki S, Nakamura T, Ohta K (2002) Purification and properties of an extracellular exoinulinase from Penicillium sp. strain TN-88 and sequence analysis of the encoding gene. Biosci Biotechnol Biochem 66:1887–1896CrossRefPubMedGoogle Scholar
  28. Nagem RAP, Rojas AL, Golubev AM, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Neustroev KN, Polikarpov I (2004) Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. J Mol Biol 344:471–480CrossRefPubMedGoogle Scholar
  29. Prakash B, Vidyasagar M, Jayalakshmi SK, Sreeramulu K (2012) Purification and some properties of low-molecular-weight extreme halophilic xylanase from Chromohalobacter sp. TPSV 101. J Mol Catal B-Enzym 74:192–198CrossRefGoogle Scholar
  30. Sharma AD, Gill PK (2007) Purification and characterization of heat-stable exo-inulinase from Streptomyces sp. J Food Eng 79:1172–1178CrossRefGoogle Scholar
  31. Sheng J, Chi ZM, Gong F, Li J (2008) Purification and characterization of extracellular inulinase from a marine yeast Cryptococcus aureus G7a and inulin hydrolysis by the purified inulinase. Appl Biochem Biotechnol 144:111–121CrossRefPubMedGoogle Scholar
  32. Takahashi N, Mizuno F, Takamori K (1983) Isolation and properties of levanase from Streptococcus salivarius KTA-19. Infect Immun 42:231–236PubMedCentralPubMedGoogle Scholar
  33. Tsujimoto Y, Watanabe A, Nakano K, Watanabe K, Matsui H, Tsuji K, Tsukihara T, Suzuki Y (2003) Gene cloning, expression, and crystallization of a thermostable exo-inulinase from Geobacillus stearothermophilus KP1289. Appl Microbiol Biotechnol 62:180–185CrossRefPubMedGoogle Scholar
  34. Vijayalaxmi S, Prakash P, Jayalakshmi SK, Mulimani VH, Sreeramulu K (2013) Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization. Appl Biochem Biotechnol 171:382–395CrossRefPubMedGoogle Scholar
  35. Vijayaraghavan K, Yamini D, Ambika V, Sowdamini NS (2009) Trends in inulinase production-a review. Crit Rev Biotechnol 29:67–77CrossRefPubMedGoogle Scholar
  36. White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7:301–306CrossRefPubMedGoogle Scholar
  37. Zhang LH, Zhao CX, Ohta WY, Wang YJ (2005) Inhibition of glucose on an exoinulinase from Kluyveromyces marxianus expressed in Pichia pastoris. Process Biochem 40:1541–1545CrossRefGoogle Scholar
  38. Zhou JP, Huang HQ, Meng K, Shi PJ, Wang YR, Luo HY, Yang PL, Bai YG, Yao B (2010) Cloning of a new xylanase gene from Streptomyces sp. TN119 using a modified thermal asymmetric interlaced-PCR specific for GC-rich genes and biochemical characterization. Appl Biochem Biotechnol 160:1277–1292CrossRefPubMedGoogle Scholar
  39. Zhou JP, Dong YY, Li JJ, Zhang R, Tang XH, Mu YL, Xu B, Wu Q, Huang ZX (2012) Cloning, heterologous expression, and characterization of novel protease-resistant α-galactosidase from new Sphingomonas strain. J Microbiol Biotechnol 22:1532–1539CrossRefPubMedGoogle Scholar
  40. Zhou JP, Gao YJ, Zhang R, Mo MH, Tang XH, Li JJ, Xu B, Ding JM, Huang ZX (2014) A novel low-temperature-active exo-inulinase identified based on Molecular-Activity strategy from Sphingobacterium sp. GN25 isolated from feces of Grus nigricollis. Process Biochem. doi:10.1016/j.procbio.2014.06.013

Copyright information

© Springer Japan 2015

Authors and Affiliations

  • Junpei Zhou
    • 1
    • 2
    • 3
    • 4
  • Mozhen Peng
    • 2
  • Rui Zhang
    • 1
    • 2
    • 3
    • 4
  • Junjun Li
    • 1
    • 2
    • 3
    • 4
  • Xianghua Tang
    • 1
    • 2
    • 3
    • 4
  • Bo Xu
    • 1
    • 2
    • 3
    • 4
  • Junmei Ding
    • 1
    • 2
    • 3
    • 4
  • Yajie Gao
    • 2
  • Junrong Ren
    • 2
  • Zunxi Huang
    • 1
    • 2
    • 3
    • 4
  1. 1.Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of EducationYunnan Normal UniversityKunmingPeople’s Republic of China
  2. 2.College of Life SciencesYunnan Normal UniversityKunmingPeople’s Republic of China
  3. 3.Key Laboratory of Yunnan for Biomass Energy and Biotechnology of EnvironmentKunmingPeople’s Republic of China
  4. 4.Key Laboratory of Enzyme EngineeringYunnan Normal UniversityKunmingPeople’s Republic of China

Personalised recommendations