Advertisement

Extremophiles

, Volume 19, Issue 2, pp 373–382 | Cite as

A unique glyceryl diglycoside identified in the thermophilic, radiation-resistant bacterium Rubrobacter xylanophilus

  • Pedro Lamosa
  • Eva C. Lourenço
  • Filipa d’Avó
  • Ana Nobre
  • Tiago M. Bandeiras
  • Milton S. da Costa
  • M. Rita Ventura
  • Helena Santos
Original Paper

Abstract

The solute pool of the actinobacterium Rubrobacter xylanophilus has been investigated as a function of the growth temperature and concentration of NaCl in the medium (Empadinhas et al. Extremophiles 11: 667–673, 2007). Changing the carbon source from glucose to maltose in a minimal growth medium led to the accumulation of an unknown organic compound whose structure was investigated by NMR and confirmed by chemical synthesis in the present study as: (2R)-2-(1-O-α-d-mannopyranosyl)-3-(1-O-α-d-glucopyranosyl)-d-glycerate (MGlyG). In addition to this newly identified diglycoside, the solute pool of R. xylanophilus included trehalose, mannosylglycerate, di-myo-inositol phosphate and di-N-acetyl-glucosamine phosphate. The structure of MGlyG was established by NMR and confirmed by chemical synthesis. The availability of g-amounts of the synthetic material allowed us to perform stabilization tests on three model enzymes (malate dehydrogenase, staphylococcal nuclease, and lysozyme), and compare the efficacy of MGlyG with other natural glyceryl glycosides, such as α-d-mannosyl-d-glycerate, α-d-glucosyl-d-glycerate and α-d-glucosyl-(1 → 6)-α-d-glucosyl-(1 → 2)-d-glycerate.

Keywords

Rubrobacter xylanophilus Compatible solute Protein stabilization Glyceryl glycosides 

Notes

Acknowledgments

The NMR spectrometers are part of The National NMR Facility (RECI/BBB-BQB/0230/2012), supported by Fundação para a Ciência e a Tecnologia. E.L. acknowledges Fundação para a Ciência e a Tecnologia for a PhD grant SFRH/47702/2008. We thank Ana Isabel Mingote for her assistance in solute purification and Tm determination.

Supplementary material

792_2014_723_MOESM1_ESM.doc (354 kb)
Supplementary material 1 (DOC 353 kb)

References

  1. Armarego WLF, Chai CLL (2003) Purification of laboratory chemicals, 5th edn, Butterworth-HeinemannGoogle Scholar
  2. Bock K, Pedersen C (1983) Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. Adv Carbohydr Chem Biochem 41:27–66CrossRefGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  4. Cicero DO, Barbato G, Bazzo RJ (2001) Sensitivity enhancement of a two-dimensional experiment for the measurement of heteronuclear long-range coupling constants, by a new scheme of coherence selection by gradients. J Magn Reson 148:209–213CrossRefPubMedGoogle Scholar
  5. Degryse E, Glansdorff N, Piérard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196CrossRefPubMedGoogle Scholar
  6. Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1951) A colorimetric method for the determination of sugars. Nature 168:167CrossRefPubMedGoogle Scholar
  7. Empadinhas N, Mendes V, Simões C, Santos MS, Mingote A, Lamosa P, Santos H, da Costa MS (2007) Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile. Extremophiles 11:667–673CrossRefPubMedGoogle Scholar
  8. Faria TQ, Knapp S, Ladenstein R, Maçanita AL, Santos H (2003) Protein stabilisation by compatible solutes: effect of mannosylglycerate on unfolding thermodynamics and activity of ribonuclease A. ChemBio Chem 4:734–741CrossRefGoogle Scholar
  9. Faria T, Mingote A, Siopa F, Ventura R, Maycock C, Santos H (2008) Design of new enzyme stabilizers inspired by glycosides of hyperthermophilic microorganisms. Carbohydr Res 343:3025–3033CrossRefPubMedGoogle Scholar
  10. Faria C, Jorge CD, Borges N, Tenreiro S, Outeiro TF, Santos H (2013) Inhibition of formation of alpha-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson’s disease. Biochim Biophys Acta 1830:4065–4072CrossRefPubMedGoogle Scholar
  11. Gibson TD (1996) Protein stabilisation using additives based on multiple electrostatic interactions. Dev Biol Stand 87:207–217PubMedGoogle Scholar
  12. Goude R, Renaud S, Bonnassie S, Bernard T, Blanco C (2004) Glutamine, glutamate, and alpha-glucosylglycerate are the major osmotic solutes accumulated by Erwinia chrysanthemi strain 3937. Appl Environ Microbiol 70:6535–6541PubMedCentralCrossRefPubMedGoogle Scholar
  13. Jorge CD, Lamosa P, Santos H (2007) α-d-Mannopyranosyl-(1,2)-α-d-glucopyranosyl-(1,2)glycerate in the thermophilic bacterium Petrotoga miotherma: structure, cellular content and function. FEBS J 274:3120–3127CrossRefPubMedGoogle Scholar
  14. Lamosa P, Martins LO, da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl Environ Microbiol 64:3591–3598PubMedCentralPubMedGoogle Scholar
  15. Lamosa P, Burke A, Peist R, Huber R, Liu MY, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C, Santos H (2000) Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 66:1974–1979PubMedCentralCrossRefPubMedGoogle Scholar
  16. Lamosa P, Rodrigues MV, Gonçalves LG, Carr J, Ventura R, Maycock C, Raven ND, Santos H (2013) Organic solutes in the deepest phylogenetic branches of the Bacteria: identification of α(1-6)glucosyl-α(1-2)glucosyl-glycerate in Persephonella marina. Extremophiles 17:137–146CrossRefPubMedGoogle Scholar
  17. Lourenço EC, Ventura MR (2011) The synthesis of compatible solute analogues-solvent effects on selective glycosylation. Carbohydr Res 346:163–168CrossRefPubMedGoogle Scholar
  18. Lourenço EC, Ventura MR (2013) The effect of electron withdrawing protecting groups at positions 4 and 6 on 1,2-cis galactosylation. Tetrahedron 69:7090–7097CrossRefGoogle Scholar
  19. Martins LO, Carreto LS, da Costa MS, Santos H (1996) New compatible solutes related to di-myo-inositol-phosphate in members of the order Thermotogales. J Bacteriol 178:5644–5651PubMedCentralPubMedGoogle Scholar
  20. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedCentralPubMedGoogle Scholar
  21. Pais TM, Lamosa P, dos Santos W, LeGall J, Turner DL, Santos H (2005) Structural determinants of protein stabilization by solutes. The importance of the hairpin loop in rubredoxins. Eur J Biochem 272:999–1011Google Scholar
  22. Ramos A, Raven NDH, Sharp RJ, Bartolucci S, Rossi M, Cannio R, Lebbink J, van der Oost J, de Vos WM, Santos H (1997) Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate. Appl Environ Microbiol 63:4020–4025PubMedCentralPubMedGoogle Scholar
  23. Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509CrossRefPubMedGoogle Scholar
  24. Santos H, Lamosa P, Faria TQ, Pais TM, de La Paz ML, Serrano L (2007) Compatible solutes of (hyper)thermophiles and their role in protein stabilization. In: Antranikian G, Driesen A, Robb F (eds) Thermophiles. CRC Taylor and Francis, Boca Raton, pp 9–24Google Scholar
  25. Santos H, Lamosa P, Borges N, Gonçalves LG, Pais TM, Rodrigues MV (2011) Organic compatible solutes of prokaryotes that thrive in hot environments: the importance of ionic compounds for thermostabilization. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Berlin, pp 497–520CrossRefGoogle Scholar
  26. Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sørensen OW, Griesinger CJ (1994) A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. Biomol NMR 4:301–306CrossRefGoogle Scholar
  27. Silva Z, Borges N, Martins LO, Wait R, da Costa MS, Santos H (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3:163–172CrossRefPubMedGoogle Scholar
  28. Timasheff SN (2002) Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc Nat Acad Sci 99:9721–9726PubMedCentralCrossRefPubMedGoogle Scholar
  29. Williams RAD, da Costa (1992) The genus Thermus and related microrganisms. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, Berlin, pp 3745–3753CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Pedro Lamosa
    • 1
  • Eva C. Lourenço
    • 1
  • Filipa d’Avó
    • 2
  • Ana Nobre
    • 2
  • Tiago M. Bandeiras
    • 1
    • 3
  • Milton S. da Costa
    • 4
  • M. Rita Ventura
    • 1
  • Helena Santos
    • 1
  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  2. 2.CNC-Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  3. 3.IBET-Instituto de Biologia Experimental e TecnológicaOeirasPortugal
  4. 4.Department of Life SciencesUniversity of CoimbraCoimbraPortugal

Personalised recommendations