, Volume 19, Issue 1, pp 1–15 | Cite as

Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0 °C and hypersaline sediments of a high Arctic permafrost spring

  • Guillaume Lamarche-Gagnon
  • Raven Comery
  • Charles W. Greer
  • Lyle G. WhyteEmail author
SPECIAL ISSUE: ORIGINAL PAPER 10th International Congress on Extremophiles
Part of the following topical collections:
  1. 10th International Congress on Extremophiles


The lost hammer (LH) spring perennially discharges subzero hypersaline reducing brines through thick layers of permafrost and is the only known terrestrial methane seep in frozen settings on Earth. The present study aimed to identify active microbial communities that populate the sediments of the spring outlet, and verify whether such communities vary seasonally and spatially. Microcosm experiments revealed that the biological reduction of sulfur compounds (SR) with hydrogen (e.g., sulfate reduction) was potentially carried out under combined hypersaline and subzero conditions, down to −20 °C, the coldest temperature ever recorded for SR. Pyrosequencing analyses of both 16S rRNA (i.e., cDNA) and 16S rRNA genes (i.e., DNA) of sediments retrieved in late winter and summer indicated fairly stable bacterial and archaeal communities at the phylum level. Potentially active bacterial and archaeal communities were dominated by clades related to the T78 Chloroflexi group and Halobacteria species, respectively. The present study indicated that SR, hydrogenotrophy (possibly coupled to autotrophy), and short-chain alkane degradation (other than methane), most likely represent important, previously unaccounted for, metabolic processes carried out by LH microbial communities. Overall, the obtained findings provided additional evidence that the LH system hosts active communities of anaerobic, halophilic, and cryophilic microorganisms despite the extreme conditions in situ.


Cryophile Halophile Sulfur/sulfate reduction Microbial ecology Anaerobic activity 16S rRNA 



cm below the sediment surface


Sulfur reduction, (bio)chemical reduction of a sulfur compound (e.g., sulfate reduction)


Sulfide release rates; the rates of sulfide (H2S) production resulting from SR



We acknowledge the following funding organizations for financial support: the Fond québécois de recherche nature et technologies (FQRNT), the Canadian Astrobiology Training Program (NSERC CREATE CATP), the Northern Science Training Program (NSTP), as well as the Polar and Continental Shelf Project (PCSP) for logistical support in the field.

Supplementary material

792_2014_703_MOESM1_ESM.pdf (820 kb)
Supplementary material 1 (PDF 820 kb)


  1. Adams MM, Hoarfrost AL, Bose A, Joye SB, Girguis PR (2013) Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity. Front Microbiol 14(4):110Google Scholar
  2. Aleev RS, Voronov VG, Ismagilova ZF, Safin RR, Ismagilov FR (2002) Scrubbing hydrogen sulfide from gases. A rational approach. Chem Technol Fuels Oils 38:260–265CrossRefGoogle Scholar
  3. Allen CC, Oehler DZ (2008) A case for ancient springs in Arabia Terra. Mars Astrobiology 8:1093–1112CrossRefGoogle Scholar
  4. Andersen DT, Pollard WH, McKay CP, Heldmann J (2002) Cold springs in permafrost on Earth and Mars. J Geophys Res-Planets 107(E3):1–4Google Scholar
  5. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555PubMedCrossRefGoogle Scholar
  6. Battler MM, Osinski GR, Banerjee NR (2013) Mineralogy of saline perennial cold springs on Axel Heiberg Island. Nunavut, Canada and implications for spring deposits on Mars Icarus 224:364–381Google Scholar
  7. Bell TH, E-D Hassan S, Lauron-Moreau A, Al-Otaibi F, Hijri M, Yergeau E, St-Arnaud M (2013) Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny ISME JGoogle Scholar
  8. Berges JA, Franklin DJ, Harrison PJ (2001) Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J Phycol 37:1138–1145CrossRefGoogle Scholar
  9. Blazewicz SJ, Barnard RL, Daly RA, Firestone MK (2013) Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J 7:2061–2068PubMedCentralPubMedCrossRefGoogle Scholar
  10. Borin S, Crotti E, Mapelli F, Tamagnini I, Corselli C, Daffonchio D (2008) DNA is preserved and maintains transforming potential after contact with brines of the deep anoxic hypersaline lakes of the Eastern Mediterranean Sea. Saline Syst 4:1–9CrossRefGoogle Scholar
  11. Burggraf S, Huber H, Stetter KO (1997) Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol 47:657–660PubMedCrossRefGoogle Scholar
  12. Campbell BJ, Kirchman DL (2013) Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J 7:210–220PubMedCentralPubMedCrossRefGoogle Scholar
  13. Campbell BJ, Yu L, Heidelberg JF, Kirchman DL (2011) Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci 108:12776–12781PubMedCentralPubMedCrossRefGoogle Scholar
  14. Charvet S, Vincent WF, Comeau AM, Lovejoy C (2012) Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change Frontiers in Microbiology 3Google Scholar
  15. Cheng L, Ding C, Li Q, He Q, Dai L-r, Zhang H (2013) DNA-SIP reveals that Syntrophaceae play an important role in methanogenic hexadecane degradation. PLoS One 8:e66784PubMedCentralPubMedCrossRefGoogle Scholar
  16. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  17. Coolen MJL, Cypionka H, Sass AM, Sass H, Overmann J (2002) Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 296:2407–2410PubMedCrossRefGoogle Scholar
  18. Costello EK, Schmidt SK (2006) Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ Microbiol 8:1471–1486PubMedCrossRefGoogle Scholar
  19. Cramm R (2009) Genomic view of energy metabolism in Ralstonia eutropha H16. J Mol Microbiol Biotechnol 16:38–52PubMedCrossRefGoogle Scholar
  20. Cui H-L, Lin Z-Y, Dong Y, Zhou P-J, Liu S-J (2007) Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57:2204–2206PubMedCrossRefGoogle Scholar
  21. Davila AF et al (2010) Hygroscopic salts and the potential for life on Mars. Astrobiology 10:617–629PubMedCrossRefGoogle Scholar
  22. DeMaere MZ et al (2013) High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc Natl Acad Sci 110:16939–16944PubMedCentralPubMedCrossRefGoogle Scholar
  23. Des Marais DJ et al (2008) The NASA astrobiology roadmap. Astrobiology 8:715–730PubMedCrossRefGoogle Scholar
  24. Doran PT, Fritsen CH, McKay CP, Priscu JC, Adams EE (2003) Formation and character of an ancient 19-m ice cover and underlying trapped brine in an “ice-sealed” east Antarctic lake. Proc Natl Acad Sci 100:26–31PubMedCentralPubMedCrossRefGoogle Scholar
  25. Embree M, Nagarajan H, Movahedi N, Chitsaz H, Zengler K (2013) Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community ISME JGoogle Scholar
  26. Gendrin A et al (2005) Sulfates in martian layered terrains: the OMEGA/Mars express view. Science 307:1587–1591PubMedCrossRefGoogle Scholar
  27. Gleeson DF, Williamson C, Grasby SE, Pappalardo RT, Spear JR, Templeton AS (2011) Low temperature S(0) biomineralization at a supraglacial spring system in the Canadian High Arctic. Geobiology 9:360–375PubMedCrossRefGoogle Scholar
  28. Godon J-J, Morinière J, Moletta M, Gaillac M, Bru V, Delgènes J-P (2005) Rarity associated with specific ecological niches in the bacterial world: the ‘Synergistes’ example. Environ Microbiol 7:213–224PubMedCrossRefGoogle Scholar
  29. Goordial J, Lamarche-Gagnon G, Lay C-Y, Whyte L (2013) Left out in the cold: life in cryoenvironments. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles, vol 27., Cellular Originm, life in extreme habitats and astrobiologySpringer, Netherlands, pp 335–363CrossRefGoogle Scholar
  30. Handl S, Dowd SE, Garcia-Mazcorro JF, Steiner JM, Suchodolski JS (2011) Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol Ecol 76:301–310PubMedCrossRefGoogle Scholar
  31. Harrison BK, Zhang H, Berelson W, Orphan VJ (2009) Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California). Appl Environ Microbiol 75:1487–1499PubMedCentralPubMedCrossRefGoogle Scholar
  32. Hezayen FF, Tindall BJ, Steinbüchel A, Rehm BHA (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280PubMedCrossRefGoogle Scholar
  33. Hurtgen MT, Arthur MA, Suits NS, Kaufman AJ (2002) The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? Earth Planet Sci Lett 203:413–429CrossRefGoogle Scholar
  34. Lay C-Y, Mykytczuk N, Niederberger T, Martineau C, Greer C, Whyte L (2012) Microbial diversity and activity in hypersaline high Arctic spring channels. Extremophiles 16:177–191PubMedCrossRefGoogle Scholar
  35. Lay C-Y, Mykytczuk NCS, Yergeau É, Lamarche-Gagnon G, Greer CW, Whyte LG (2013) Defining the functional potential and active community members of a sediment microbial community in a high-arctic hypersaline subzero spring. Appl Environ Microbiol 79:3637–3648PubMedCentralPubMedCrossRefGoogle Scholar
  36. Magot M et al (1997) Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a New Anaerobic, Slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824PubMedCrossRefGoogle Scholar
  37. Magot M, Ollivier B, Patel BC (2000) Microbiology of petroleum reservoirs Antonie van Leeuwenhoek 77:103–116CrossRefGoogle Scholar
  38. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361PubMedCrossRefGoogle Scholar
  39. McCord TB, Orlando TM, Teeter G, Hansen GB, Sieger MT, Petrik NG, Van Keulen L (2001) Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions. J Geophys Res Planets 106:3311–3319CrossRefGoogle Scholar
  40. McKay C, Mykytczuk N, Whyte L (2012) Life in ice on other worlds. In: Miller RV, Whyte LG (eds) Polar microbiology: life in deep freeze. ASM Press, Washington, DC, pp 290–304Google Scholar
  41. Murray AE et al (2012) Microbial life at −13 and #xB0;C in the brine of an ice-sealed Antarctic lake. Proc Natl Acad Sci 109:20626–20631PubMedCentralPubMedCrossRefGoogle Scholar
  42. Niederberger TD et al (2010) Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J 4:1326–1339PubMedCrossRefGoogle Scholar
  43. Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923PubMedCrossRefGoogle Scholar
  44. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238CrossRefGoogle Scholar
  45. Osterloo MM, Anderson FS, Hamilton VE, Hynek BM (2010) Geologic context of proposed chloride-bearing materials on Mars. J Geophys Res 115:E10012CrossRefGoogle Scholar
  46. Ozcan B, Cokmus C, Coleri A, Caliskan M (2006) Characterization of extremely halophilic Archaea isolated from saline environment in different parts of Turkey. Microbiology 75:739–746CrossRefGoogle Scholar
  47. Pohlmann A et al (2006) Genome sequence of the bioplastic-producing Knallgas bacterium Ralstonia eutropha H16. Nat Biotech 24:1257–1262CrossRefGoogle Scholar
  48. Pollard WH (2005) Icing processes associated with high Arctic perennial springs, Axel Heiberg Island, Nunavut, Canada. Permafr Periglac Processes 16:51–68CrossRefGoogle Scholar
  49. Priscu JC, Christner BC (2004) Earth’s icy biosphere. Microb Divers Prospect:130-145Google Scholar
  50. Rafikov SR, Aleev RS, Masagutov RM, Danilov VT, Dal’nova YS (1982) Reaction of formaldehyde with hydrogen sulfide. Russ Chem Bull 31:1452–1453CrossRefGoogle Scholar
  51. Robador A, Brüchert V, Jørgensen BB (2009) The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Environ Microbiol 11:1692–1703PubMedCrossRefGoogle Scholar
  52. Rossi AP et al (2008) Large-scale spring deposits on Mars? J Geophys Res 113:E08016Google Scholar
  53. Samarkin VA, Madigan MT, Bowles MW, Casciotti KL, Priscu JC, McKay CP, Joye SB (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geosci 3:341–344CrossRefGoogle Scholar
  54. Sassen R, Roberts HH, Carney R, Milkov AV, DeFreitas DA, Lanoil B, Zhang C (2004) Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chem Geol 205:195–217CrossRefGoogle Scholar
  55. Schloss PD et al (2009) Introducing mothur: open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCentralPubMedCrossRefGoogle Scholar
  56. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310PubMedCentralPubMedCrossRefGoogle Scholar
  57. Sorokin DY, Muyzer G (2010) Desulfurispira natronophila gen. nov. sp. nov.: an obligately anaerobic dissimilatory sulfur-reducing bacterium from soda lakes. Extremophiles 14:349–355PubMedCentralPubMedCrossRefGoogle Scholar
  58. Steven B, Niederberger TD, Bottos EM, Dyen MR, Whyte LG (2007) Development of a sensitive radiorespiration method for detecting microbial activity at subzero temperatures. J Microbiol Methods 71:275–280PubMedCrossRefGoogle Scholar
  59. Steven B, Niederberger T, Whyte L (2009) Bacterial and archaeal diversity in permafrost. In: Margesin R (ed) Permafrost soils, vol 16., Soil BiologySpringer, Heidelberg, pp 59–72CrossRefGoogle Scholar
  60. Surkov AV, Dubinina GA, Lysenko AM, Glöckner FO, Kuever J (2001) Dethiosulfovibrio russensis sp. nov., Dethosulfovibrio marinus sp. nov. and Dethosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from ‘Thiodendron’ sulfur mats in different saline environments. Int J Syst Evol Microbiol 51:327–337PubMedGoogle Scholar
  61. Tarpgaard I, Boetius A, Finster K (2006) Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes. Antonie Van Leeuwenhoek 89:109–124PubMedCrossRefGoogle Scholar
  62. Tehei M, Franzetti B, Maurel M-C, Vergne J, Hountondji C, Zaccai G (2002) The search for traces of life: the protective effect of salt on biological macromolecules. Extremophiles 6:427–430PubMedCrossRefGoogle Scholar
  63. Tomlinson GA, Jahnke LL, Hochstein LI (1986) Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium. Int J Syst Bacteriol 36:66–70PubMedCrossRefGoogle Scholar
  64. Treude T, Orphan V, Knittel K, Gieseke A, House CH, Boetius A (2007) Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl Environ Microbiol 73:2271–2283PubMedCentralPubMedCrossRefGoogle Scholar
  65. Westrich JT, Berner RA (1988) The effect of temperature on rates of sulfate reduction in marine sediments. Geomicrobiol J 6:99–117CrossRefGoogle Scholar
  66. Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57:2299–2306PubMedCrossRefGoogle Scholar
  67. Zhang L, De Gusseme B, De Schryver P, Mendoza L, Marzorati M, Verstraete W (2009) Decreasing sulfide generation in sewage by dosing formaldehyde and its derivatives under anaerobic conditions. Water Sci Technol 59:1248–1254PubMedGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Guillaume Lamarche-Gagnon
    • 1
  • Raven Comery
    • 1
  • Charles W. Greer
    • 2
  • Lyle G. Whyte
    • 1
    Email author
  1. 1.Department of Natural Resource Sciences (NRS)McGill UniversityMontrealCanada
  2. 2.National Research Council CanadaMontrealCanada

Personalised recommendations