, Volume 19, Issue 1, pp 39–47 | Cite as

Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments

  • Irene Sánchez-Andrea
  • Alfons J. M. Stams
  • Sabrina Hedrich
  • Ivan Ňancucheo
  • D. Barrie Johnson
Original Paper


Three strains of sulfate-reducing bacteria (M1T, D, and E) were isolated from acidic sediments (White river and Tinto river) and characterized phylogenetically and physiologically. All three strains were obligately anaerobic, mesophilic, spore-forming straight rods, stained Gram-negative and displayed variable motility during active growth. The pH range for growth was 3.8–7.0, with an optimum at pH 5.5. The temperature range for growth was 15–40 °C, with an optimum at 30 °C. Strains M1T, D, and E used a wide range of electron donors and acceptors, with certain variability within the different strains. The nominated type strain (M1T) used ferric iron, nitrate, sulfate, elemental sulfur, and thiosulfate (but not arsenate, sulfite, or fumarate) as electron acceptors, and organic acids (formate, lactate, butyrate, fumarate, malate, and pyruvate), alcohols (glycerol, methanol, and ethanol), yeast extract, and sugars (xylose, glucose, and fructose) as electron donors. It also fermented some substrates such as pyruvate and formate. Strain M1T tolerated up to 50 mM ferrous iron and 10 mM aluminum, but was inhibited by 1 mM copper. On the basis of phenotypic, phylogenetic, and genetic characteristics, strains M1T, D, and E represent a novel species within the genus Desulfosporosinus, for which the name Desulfosporosinus acididurans sp. nov. is proposed. The type strain is M1T (=DSM 27692T = JCM 19471T). Strain M1T was the first acidophilic SRB isolated, and it is the third described species of acidophilic SRB besides Desulfosporosinus acidiphilus and Thermodesulfobium narugense.


Acidophile Anaerobe Sulfate reduction Isolation Characterization Desulfosporosinus 



This work was financed by an ERC Grant (project 323009) attributed to A.J.M. Stams and the Gravitation Grant (SIAM 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation. Thanks to Dr. Martin Mühling, Dr. Patrick Petzsch and Prof. Michael Schlömann for sharing the data of the genome sequencing funded by the European Social Fund (ESF) and the Federal State of Saxony (Germany) and to Prof. Ricardo Amils and Prof. Jose Luis Sanz to promote the isolation of strains D and E.

Supplementary material

792_2014_701_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 kb)


  1. Alazard D, Joseph M, Battaglia-Brunet F, Cayol JL, Ollivier B (2010) Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments. Extremophiles 14:305–312PubMedCrossRefGoogle Scholar
  2. Atkinson T, Cairns S, Cowan DA, Danson MJ, Hough DW, Johnson DB, Norris PR, Raven N, Robinson C, Robson R (2000) A microbiological survey of Montserrat Island hydrothermal biotopes. Extremophiles 4:305–313PubMedCrossRefGoogle Scholar
  3. Beeder J, Torsvik T, Lien T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336PubMedCrossRefGoogle Scholar
  4. Biebl H, Schwab-Hanisch H, Spröer C, Lünsdorf H (2000) Propionispora vibrioides, nov. gen., nov. sp., a new gram-negative, spore-forming anaerobe that ferments sugar alcohols. Arch Microbiol 174:239–247PubMedCrossRefGoogle Scholar
  5. Campbell LL, Postgate JR (1965) Classification of the spore-forming sulfate-reducing bacteria. Microbiol Mol Biol Rev 29:359–362Google Scholar
  6. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  7. Doetsch R (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RDE, Costilow RN, Nester EW, Wood WA, Krieg NR, Philips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, D.C., pp 21–33Google Scholar
  8. Gyure RA, Konopka A, Brooks A, Doemel W (1990) Microbial sulfate reduction in acidic (pH 3) strip-mine lakes. FEMS Microbiol Lett 73:193–201CrossRefGoogle Scholar
  9. Johnson DB, Ghauri M, McGinness S (1993) Biogeochemical cycling of iron and sulphur in leaching environments. FEMS Microbiol Rev 11:63–70CrossRefGoogle Scholar
  10. Johnson DB, Jameson E, Rowe O, Wakeman K, Hallberg KB (2009) Sulfidogenesis at low pH by acidophilic bacteria and its potential for the selective recovery of transition metals from mine waters. Adv Mater Res 71:693–696CrossRefGoogle Scholar
  11. Jones RM, Hedrich S, Johnson DB (2013) Acidocella aromatica sp. nov.: an acidophilic heterotrophic alphaproteobacterium with unusual phenotypic traits. Extremophiles 17:841–850PubMedCrossRefGoogle Scholar
  12. Kimura S, Hallberg KB, Johnson DB (2006) Sulfidogenesis in low pH (3.8–4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17:57–65CrossRefGoogle Scholar
  13. Klemps R, Cypionka H, Widdel F, Pfennig N (1985) Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143:203–208CrossRefGoogle Scholar
  14. Koschorreck M (2008) Microbial sulphate reduction at a low pH. FEMS Microbiol Ecol 64:329–342PubMedCrossRefGoogle Scholar
  15. Kusel K, Roth U, Trinkwalter T, Peiffer S (2001) Effect of pH on the anaerobic microbial cycling of sulfur in mining-impacted freshwater lake sediments. Environ Exp Bot 46:213–223CrossRefGoogle Scholar
  16. Lee YJ, Romanek CS, Wiegel J (2009) Desulfosporosinus youngiae sp. nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage. Int J Syst Evol Microbiol 59:2743–2746PubMedCrossRefGoogle Scholar
  17. Ludwig W, Strunk O, Westram R, Richter L, Meier H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCentralPubMedCrossRefGoogle Scholar
  18. Mayeux B, Fardeau M, Bartoli-Joseph M, Casalot L, Vinsot A, Labat M (2013) Desulfosporosinus burensis sp. nov., a spore-forming, mesophilic, sulfate-reducing bacterium isolated from a deep clay environment. Int J Syst Evol Microbiol 63:593–598PubMedCrossRefGoogle Scholar
  19. Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586PubMedCentralPubMedGoogle Scholar
  20. Mogensen GL, Kjeldsen KU, Ingvorsen K (2005) Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulphate-reducing bacterium isolated from activated sludge. Anaerobe 11:339–349PubMedCrossRefGoogle Scholar
  21. Moreau JW, Zierenberg RA, Banfield JF (2010) Diversity of dissimilatory sulfite reductase genes (dsrAB) in a salt marsh impacted by long-term acid mine drainage. Appl Environ Microbiol 76:4819–4828PubMedCentralPubMedCrossRefGoogle Scholar
  22. Mori K, Kim H, Kakegawa T, Hanada S (2003) A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7:283–290PubMedCrossRefGoogle Scholar
  23. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev Microbiol 6:441–454PubMedGoogle Scholar
  24. Ňancucheo I, Johnson DB (2012) Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria. Microb Biotechnol 5:34–44PubMedCentralPubMedCrossRefGoogle Scholar
  25. Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, Morel FM (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388PubMedCrossRefGoogle Scholar
  26. Norris P, Johnson D (1998) Acidophilic microorganisms. In: Horikoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York, pp 133–153Google Scholar
  27. Plugge CM, Zhang W, Scholten JC, Stams AJ (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81PubMedCentralPubMedCrossRefGoogle Scholar
  28. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829PubMedCentralPubMedCrossRefGoogle Scholar
  29. Ramamoorthy S, Sass H, Langner H, Schumann P, Kroppenstedt R, Spring S, Overmann J, Rosenzweig R (2006) Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56:2729–2736PubMedCrossRefGoogle Scholar
  30. Robertson W, Bowman J, Franzmann P, Mee B (2001) Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol 51:133–140PubMedGoogle Scholar
  31. Rowe OF, Sánchez-España J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771PubMedCrossRefGoogle Scholar
  32. Sánchez-Andrea I, Knittel K, Amann R, Amils R, Sanz JL (2012a) Quantification of Tinto River sediment microbial communities: the importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage. Appl Environ Microbiol 78(13):4638–4645PubMedCentralPubMedCrossRefGoogle Scholar
  33. Sánchez-Andrea I, Triana D, Sanz JL (2012b) Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Water Sci Technol 66(11):2425–2431PubMedCrossRefGoogle Scholar
  34. Sánchez-Andrea I, Stams AJ, Amils R, Sanz JL (2013) Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments. Environ Microbiol Rep 5:1758–2229Google Scholar
  35. Sánchez-Andrea I, Sanz JL, Bijmans MF, Stams AJ (2014) Sulfate reduction at low pH to remediate acid mine drainage. J Hazard Mater 269:98–109PubMedCrossRefGoogle Scholar
  36. Santana M (2008) Presence and expression of terminal oxygen reductases in strictly anaerobic sulfate-reducing bacteria isolated from salt-marsh sediments. Anaerobe 14:145–156PubMedCrossRefGoogle Scholar
  37. Sass H, Berchtold M, Branke J, König H, Cypionka H, Babenzien H (1998) Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol 21:212–219PubMedCrossRefGoogle Scholar
  38. Sen A, Johnson B (1999) Acidophilic sulphate-reducing bacteria: candidates for bioremediation of acid mine drainage. Process Metall 9:709–718CrossRefGoogle Scholar
  39. Sorokin DY, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G (2008) Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov.––a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:1444–1453PubMedCrossRefGoogle Scholar
  40. Spring S, Rosenzweig F (2006) The genera Desulfitobacterium and Desulfosporosinus: taxonomy. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes: a handbook on the biology of bacteria, 3rd edn. Springer, Singapore, pp 771–786CrossRefGoogle Scholar
  41. Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Pauker O, Hippe H (1997) Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Evol Microbiol 47:1134–1139Google Scholar
  42. Stams AJM, Van Dijk JB, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119PubMedCentralPubMedGoogle Scholar
  43. Tarpgaard IH, Boetius A, Finster K (2006) Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes. Antonie Van Leeuwenhoek 89:109–124PubMedCrossRefGoogle Scholar
  44. Tuttle JH, Dugan PR, Macmillan CB, Randles CI (1969) Microbial dissimilatory sulfur cycle in acid mine water. J Bacteriol 97:594–602PubMedCentralPubMedGoogle Scholar
  45. Vatsurina A, Badrutdinova D, Schumann P, Spring S, Vainshtein M (2008) Desulfosporosinus hippei sp. nov., a mesophilic sulfate-reducing bacterium isolated from permafrost. Int J Syst Evol Microbiol 58:1228–1232PubMedCrossRefGoogle Scholar
  46. Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585Google Scholar
  47. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer K, Ludwig W, Glöckner FO, Rosselló-Móra R (2008) The All-species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250PubMedCrossRefGoogle Scholar
  48. Zellner G, Stackerbrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel H, Stetter KO, Winter J (1989) Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, Archaeoglobus fulgidus strain Z. Syst Appl Microbiol 11:151–160CrossRefGoogle Scholar
  49. Zhilina T, Zavarzin G, Rainey F, Pikuta E, Osipov G, Kostrikina N (1997) Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Irene Sánchez-Andrea
    • 1
  • Alfons J. M. Stams
    • 1
  • Sabrina Hedrich
    • 2
  • Ivan Ňancucheo
    • 3
  • D. Barrie Johnson
    • 4
  1. 1.Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
  2. 2.Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany
  3. 3.Universidad Arturo Prat, Iquique, Chile & Instituto Tecnológico ValeBelémBrazil
  4. 4.College of Natural SciencesBangor UniversityBangorUK

Personalised recommendations