, Volume 18, Issue 5, pp 811–824 | Cite as

The Santa Pola saltern as a model for studying the microbiota of hypersaline environments

  • Antonio Ventosa
  • Ana Beatriz Fernández
  • María José León
  • Cristina Sánchez-Porro
  • Francisco Rodriguez-Valera
Special Issue: Review 10th International Congress on Extremophiles
Part of the following topical collections:
  1. 10th International Congress on Extremophiles


Multi-pond salterns constitute an excellent model for the study of the microbial diversity and ecology of hypersaline environments, showing a wide range of salt concentrations, from seawater to salt saturation. Accumulated studies on the Santa Pola (Alicante, Spain) multi-pond solar saltern during the last 35 years include culture-dependent and culture-independent molecular methods and metagenomics more recently. These approaches have permitted to determine in depth the microbial diversity of the ponds with intermediate salinities (from 10 % salts) up to salt saturation, with haloarchaea and bacteria as the two main dominant groups. In this review, we describe the main results obtained using the different methodologies, the most relevant contributions for understanding the ecology of these extreme environments and the future perspectives for such studies.


Hypersaline habitats Salterns Santa Pola Haloarchaea Halophilic bacteria Microbial ecology Metagenomics 



The research of the authors was supported by grants from the Spanish Ministry of Science and Innovation (CGL2013-46941-P, CGL2010-19303, CGL2009-12651-C02-01 and BIO2011-12879-E), MAGYK (BIO2008-02444), MICROGEN (Programa CONSOLIDER-INGENIO 2010 CDS2009-00006), National Science Foundation (Grant DEB-0919290), MaCuMBA Project 311975 of the European Commission FP7, the Generalitat Valenciana (DIMEGEN PROMETEO/2010/089 and ACOMP/2009/155) and the Junta de Andalucía (P10-CVI-6226). FEDER funds and the Plan Andaluz de Investigación also supported this research. We thank Juan Luis Ribas and Asunción Fernández, from the Microscopy Service of CITIUS (General Research Services, University of Sevilla, Spain) for technical assistance. Maria Jose León and Ana Beatriz Fernández were recipients of postgraduate and postdoctoral fellowships, respectively, from the Junta de Andalucía.


  1. Antón J, Llobet-Brossa E, Rodríguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523PubMedCrossRefGoogle Scholar
  2. Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057PubMedCentralPubMedCrossRefGoogle Scholar
  3. Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491PubMedGoogle Scholar
  4. Arenas M, Bañón PI, Copa-Patiño JL, Sánchez-Porro C, Ventosa A, Soliveri J (2009) Halomonas ilicicola sp. nov., a moderately halophilic bacterium isolated from a saltern. Int J Syst Evol Microbiol 59:578–582PubMedCrossRefGoogle Scholar
  5. Benlloch S, Martínez-Murcia A, Rodriguez-Valera F (1995) Sequencing of bacterial and archaeal 16S rDNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574–581CrossRefGoogle Scholar
  6. Benlloch S, Acinas SG, Antón J, López-López A, Luz SP, Rodríguez-Valera F (2001) Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb Ecol 41:12–19PubMedGoogle Scholar
  7. Benlloch S, López-López A, Casamayor EO, Ovreas L, Goddard V, Daee FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodríguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360PubMedCrossRefGoogle Scholar
  8. Bolhuis H, Poele EM, Rodríguez-Valera F (2004) Isolation and cultivation of Walsby’s square archaeon. Environ Microbiol 6:349–360CrossRefGoogle Scholar
  9. Boujelben I, Gomariz M, Martínez-García M, Santos F, Peña A, López C, Antón J, Maalej S (2012) Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. Antonie van Leeuwenhoek 101:845–857CrossRefGoogle Scholar
  10. Bowers KJ, Wiegel J (2011) Temperature and pH optima of extremely halophilic Archaea. a mini-review. Extremophiles 15:119–128PubMedCrossRefGoogle Scholar
  11. Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic bacteria: does combining the extreme of high salt, alkaline pH and elevated temperature approach a physic-chemical boundary for life? Saline Systems 5:9PubMedCentralPubMedCrossRefGoogle Scholar
  12. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392PubMedCrossRefGoogle Scholar
  13. Casamayor EO, Calderón-Paz JI, Pedrós-Alió C (2000) 5S rRNA fingerprints of marine bacteria, halophilic archaea and natural prokaryotic assemblages along a salinity gradient. FEMS Microbiol Ecol 34:113–119PubMedCrossRefGoogle Scholar
  14. Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348PubMedCrossRefGoogle Scholar
  15. Claus D, Fahmy F, Rolf HJ, Tosunoglu N (1983) Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 4:496–506PubMedCrossRefGoogle Scholar
  16. Cuadros-Orellana S, Martin-Cuadrado AB, Legault B, D’Auria G, Zhaxybayeva O, Papke RT, Rodriguez-Valera F (2007) Genomic plasticity in prokaryotes: the case of the square haloarchaeon. ISME J 1:235–245PubMedCrossRefGoogle Scholar
  17. de la Haba RR, Sánchez-Porro C, Márquez MC, Ventosa V (2011) Taxonomy of halophiles. In: Horikoshi K, Antranikian G, Bull A, Robb F, Stetter K (eds) Extremophiles handbook. Springer, Heidelberg, pp 255–308CrossRefGoogle Scholar
  18. Dobson SJ, Franzmann PD (1996) Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46:550–558CrossRefGoogle Scholar
  19. Dulau N (1983) Les domaines sédimentaires préhalitiques des marais salants de la région de Salin-de-Giraud (France) et de Santa Pola (Espagne). Doctoral Thesis. 3ème Cycle-Université Louis Pasteur, StrasbourgGoogle Scholar
  20. Estrada M, Henriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49:281–293PubMedCrossRefGoogle Scholar
  21. Fernandez AB, Ghai R, Martin-Cuadrado AB, Sanchez-Porro C, Rodriguez-Valera F, Ventosa A (2013) Metagenome sequencing of prokaryotic microbiota from two hypersaline ponds of a marine saltern in Santa Pola, Spain. Genome Announc 1:e00933-13PubMedCentralPubMedCrossRefGoogle Scholar
  22. Fernández AB, Ghai R, Martin-Cuadrado AB, Sánchez-Porro C, Rodriguez-Valera F, Ventosa A (2014a) Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol Ecol 88:623–635PubMedCrossRefGoogle Scholar
  23. Fernández AB, Vera-Gargallo B, Sánchez-Porro C, Ghai R, Papke RT, Rodriguez-Valera F, Ventosa A (2014b) Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5:196PubMedCentralPubMedCrossRefGoogle Scholar
  24. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105:3805–3810PubMedCentralPubMedCrossRefGoogle Scholar
  25. Garcia MT, Nieto JJ, Ventosa A, Ruiz-Berraquero F (1987a) The susceptibility of the moderate halophile Vibrio costicola to heavy metals. J Appl Bacteriol 63:63–66CrossRefGoogle Scholar
  26. Garcia MT, Ventosa A, Ruiz-Berraquero F, Kocur M (1987b) Taxonomic study and amended description of Vibrio costicola. Int J Syst Bacteriol 37:251–256CrossRefGoogle Scholar
  27. Garcia-Heredia I, Martin-Cuadrado AB, Mojica FJM, Santos F, Mira A, Antón J, Rodriguez-Valera F (2012) Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS ONE 7:e33802PubMedCentralPubMedCrossRefGoogle Scholar
  28. Ghai R, Pašić L, Fernández AB, Martin-Cuadrado AB, Mizuno CM, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodríguez-Valera F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135PubMedCentralPubMedCrossRefGoogle Scholar
  29. Grant WD, Pagaling E, Márquez MC, Gutiérrez MC, Cowan DA, Ma Y, Jones BE, Ventosa A, Heaphy S (2011) The hypersaline lakes of Inner Mongolia: the MGAtech projet. In: Oren A, Ma Y, Ventosa A (eds) Halophiles and hypersaline environments. Springer, New York, pp 65–107CrossRefGoogle Scholar
  30. Guixa-Boixareu N, Calderón-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11:215–227CrossRefGoogle Scholar
  31. Gutierrez MC, Garcia MT, Ventosa A, Ruiz-Berraquero F (1989a) Relationships among Vibrio costicola strains assessed by DNA-DNA hybridization. FEMS Microbiol Lett 61:37–40CrossRefGoogle Scholar
  32. Gutierrez MC, Ventosa A, Ruiz-Berrequero F (1989b) DNA-DNA homology studies among strains of Haloferax and other halobacteria. Cur Microbiol 18:253–256CrossRefGoogle Scholar
  33. Gutierrez MC, Ventosa A, Ruiz-Berrequero F (1990) Deoxyribonucleic acid relatedness among species of Haloarcula and other halobacteria. Biochem Cell Biol 68:106–110CrossRefGoogle Scholar
  34. Gutierrez MC, Kamekura M, Holmes ML, Dyall-Smith ML, Ventosa A (2002) Taxonomic characterization of Haloferax sp. (“H. alicantei”) strain Aa 2.2: description of Haloferax lucentensis sp. nov. Extremophiles 6:479–483PubMedCrossRefGoogle Scholar
  35. Hao MV, Kocur M, Komagata K (1984) Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. J Gen Appl Microbiol 30:449–459CrossRefGoogle Scholar
  36. Juez G, Rodriguez-Valera F, Ventosa A, Kushner DJ (1986) Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec. nov., two new species of extremely halophilic archaebacteria. Syst Appl Microbiol 8:75–79CrossRefGoogle Scholar
  37. Kessel M, Cohen Y (1982) Ultrastructure of square bacteria from a brine pool in Southern Sinai. J Bacteriol 150:851–860PubMedCentralPubMedGoogle Scholar
  38. Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, Rooney AP, Brambilla E, Connor N, Ratcliff RM, Nevo E, Cohan FM (2008) Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci USA 105:2504–2509PubMedCentralPubMedCrossRefGoogle Scholar
  39. Landry JC, Jaccard J (1984) Chimie des eaux libres dans le marais salant de Santa-Pola, salina de Bras del Port. Rev Geol 38(39):37–53Google Scholar
  40. Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodriguez-Valera F, Papke RT (2006) Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genom 7:171CrossRefGoogle Scholar
  41. León MJ, Fernández AB, Ghai R, Sánchez-Porro C, Rodriguez-Valera F, Ventosa A (2014) From metagenomics to pure culture: isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen. nov., sp. nov. Appl Environ Microbiol 80:3850–3857PubMedCrossRefGoogle Scholar
  42. López-Pérez M, Ghai R, Leon MJ, Rodríguez-Olmos A, Copa-Patiño JL, Soliveri J, Sanchez-Porro C, Ventosa A, Rodriguez-Valera F (2013) Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium. BMC Genom 14:787CrossRefGoogle Scholar
  43. Márquez MC, Ventosa A, Ruiz-Berraquero F (1990) Marinococcus hispanicus, a new species of moderately halophilic Gram-positive cocci. Int J Syst Bacteriol 40:165–169CrossRefGoogle Scholar
  44. Márquez MC, Ventosa A, Ruiz-Berraquero F (1992) Phenotypic and chemotaxonomic characterization of Marinococcus halophilus. Syst Appl Microbiol 15:63–69CrossRefGoogle Scholar
  45. Mellado E, Moore ER, Nieto JJ, Ventosa A (1996) Analysis of 16S rRNA gene sequences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov. Int J Syst Bacteriol 46:817–821PubMedCrossRefGoogle Scholar
  46. Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082PubMedCentralPubMedCrossRefGoogle Scholar
  47. Meseguer I, Rodriguez-Valera F, Ventosa A (1986) Antagonistic interactions among halobacteria due to halocin production. FEMS Microbiol Let 36:177–182CrossRefGoogle Scholar
  48. Moldoveanu N, Kates M, Montero CG, Ventosa A (1990) Polar lipids of non-alkaliphilic Halococci. Biochim Biophys Acta 1046:127–135PubMedCrossRefGoogle Scholar
  49. Monteoliva-Sanchez M, Ventosa A, Ramos-Cormenzana A (1989) Cellular fatty acid composition of moderately halophilic cocci. Syst Appl Microbiol 12:141–144CrossRefGoogle Scholar
  50. Montero CG, Ventosa A, Ruiz-Berraquero F, Rodriguez-Valera F (1988) Taxonomic study of non-alkaliphilic halococci. J Gen Microbiol 134:725–732Google Scholar
  51. Nieto JJ, Ventosa A, Ruiz-Berraquero F (1987) Susceptibility of halobacteria to heavy metals. Appl Environ Microbiol 53:1199–1202PubMedCentralPubMedGoogle Scholar
  52. Nieto JJ, Fernández-Castillo R, Márquez MC, Ventosa A, Quesada E, Ruiz-Berraquero F (1989a) Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55:2385–2390PubMedCentralPubMedGoogle Scholar
  53. Nieto JJ, Ventosa A, Montero CG, Ruiz-Berraquero F (1989b) Toxicity of heavy metals to archaebacterial halococci. Syst Appl Microbiol 11:116–120CrossRefGoogle Scholar
  54. Nieto JJ, Fernandez-Castillo R, Garcia MT, Mellado E, Ventosa A (1993) Survey of antimicrobial susceptibility of moderately halophilic and extremely halophilic aerobic Archaeobacteria; utilization of antimicrobial resistance as a genetic marker. Syst Appl Microbiol 16:352–360CrossRefGoogle Scholar
  55. Oren A (1990) Estimation of the contribution of halobacteria to the bacterial biomass and activity in solar salterns by the use of bile salts. FEMS Microbiol Ecol 73:41–48CrossRefGoogle Scholar
  56. Oren A (2011) Ecology of halophiles. In: Horikoshi K, Antranikian G, Bull A, Robb F, Stetter K (eds) Extremophiles handbook. Springer, Heidelberg, pp 344–361Google Scholar
  57. Oren A, Rodríguez-Valera F (2001) The contribution of halophilic bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130PubMedGoogle Scholar
  58. Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760PubMedCentralPubMedCrossRefGoogle Scholar
  59. Papke RT, Douady CJ, Doolittle WF, Rodríguez-Valera F (2003) Diversity of bacteriorhodopsins in different hypersaline waters from a single Spanish saltern. Environ Microbiol 5:1039–1145PubMedCrossRefGoogle Scholar
  60. Papke RT, Koenig JE, Rodríguez-Valera F, Doolittle WF (2004) Frequent recombination in a saltern population of Halorubrum. Science 306:1928–1929PubMedGoogle Scholar
  61. Pašić L, Rodriguez-Mueller B, Martin-Cuadrado AB, Mira A, Rohwer F, Rodriguez-Valera F (2009) Metagenomic islands of hyperhalophiles: the case of Salinibacter ruber. BMC Genom 10:570CrossRefGoogle Scholar
  62. Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155PubMedCrossRefGoogle Scholar
  63. Podell S, Emerson JB, Jones CM, Ugalde JA, Welch S, Heidelberg KB, Banfield JF, Allen EE (2013) Seasonal fluctuations in ionic concentrations drive microbial succession in a hypersaline lake community. ISME J 8:e61692Google Scholar
  64. Quesada E, Valderrama MJ, Bejar V, Ventosa A, Ruiz-Berraquero F, Ramos-Cormenzana A (1987) Numerical taxonomy of moderately halophilic Gram-negative nonmotile eubacteria. Syst Appl Microbiol 9:132–137CrossRefGoogle Scholar
  65. Rodriguez-Valera F (1988) Characteristics and microbial ecology of hypersaline environments. In: Rodriguez-Valera F (ed) Halophilic bacteria. CRC Press, Boca Raton, pp 3–30Google Scholar
  66. Rodriguez-Valera F, Juez G, Kushner DJ (1982) Halocins: salt-dependent bacteriocins produced by extremely halophilic rods. Can J Microbiol 28:151–154CrossRefGoogle Scholar
  67. Rodriguez-Valera F, Juez G, Kushner DJ (1983) Halobacterium mediterranei spec, nov., a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 4:369–381PubMedCrossRefGoogle Scholar
  68. Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pašić L, Thingstad TF, Rohwer F, Mira A (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7:828–836PubMedCrossRefGoogle Scholar
  69. Rodríguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1981) Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243PubMedCrossRefGoogle Scholar
  70. Rodríguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentrations in a multipond saltern. Microb Ecol 11:107–115PubMedCrossRefGoogle Scholar
  71. Santos F, Meyerdierks A, Peña A, Rosselló-Mora R, Amann R, Antón J (2007) Metagenomic approach to the study of halophages: the environmental halophage. Environ Microbiol 9:1711–1723PubMedCrossRefGoogle Scholar
  72. Santos F, Yarza P, Parro V, Briones C, Antón J (2010) The metavirome of a hypersaline environment. Environ Microbiol 12:2965–2976PubMedCrossRefGoogle Scholar
  73. Santos F, Moreno-Paz M, Meseguer I, López C, Rosselló-Mora R, Parro V, Antón J (2011) Metatranscriptomic analysis of extremely halophilic viral communities. ISME J 5:1621–1633PubMedCentralPubMedCrossRefGoogle Scholar
  74. Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer KH (1996) Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov., and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496CrossRefGoogle Scholar
  75. Stoeckenius W (1981) Walsby’s square bacterium: fine structure of an orthogonal procaryote. J Bacteriol 148:352–360PubMedCentralPubMedGoogle Scholar
  76. Tang S-L, Nuttal S, Ngui K, Fisher C, Lopez P, Dyall-Smith M (2002) HF2: a double-stranded DNA tailed haloarchaeal virus with a mosaic genome. Mol Microbiol 44:283–296PubMedCrossRefGoogle Scholar
  77. Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99CrossRefGoogle Scholar
  78. Valderrama MJ, Quesada E, Bejar V, Ventosa A, Gutiérrez MC, Ruiz-Berraquero F, Ramos-Cormenzana A (1991) Deleya salina sp. nov., a moderately halophilic Gram-negative bacterium. Int J Syst Bacteriol 41:377–384CrossRefGoogle Scholar
  79. Ventosa A (1993) Molecular taxonomy of Gram-positive moderately halophilic cocci. Experientia 49:1055–1058CrossRefGoogle Scholar
  80. Ventosa A (2006) Unusual micro-organisms from unusual habitats: hypersaline environments. In: logan NA, Lappin-Scott HM, Oyston PCF (eds) Prokaryotic diversity: mechanisms and significance. Cambridge University Press, Cambridge, pp 223–253CrossRefGoogle Scholar
  81. Ventosa A, Quesada E, Rodríguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968Google Scholar
  82. Ventosa A, Ramos-Cormenzana A, Kocur M (1983) Moderately halophilic gram-positive cocci from hypersaline environments. Syst Appl Microbiol 4:564–570PubMedCrossRefGoogle Scholar
  83. Ventosa A, Gutiérrez MC, García MT, Ruiz-Berraquero F (1989) Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. Int J Syst Bacteriol 39:382–386CrossRefGoogle Scholar
  84. Ventosa A, Marquez MC, Ruiz-Berraquero F, Kocur M (1990) Salinicoccus roseus gen. nov., sp. nov., a new moderately halophilic Gram-positive coccus. Syst Appl Microbiol 13:29–33CrossRefGoogle Scholar
  85. Ventosa A, Marquez MC, Weiss N, Tindall BJ (1992) Transfer of Marinococcus hispanicus to the genus Salinicoccus as Salinicoccus hispanicus comb. nov. Syst Appl Microbiol 15:530–534CrossRefGoogle Scholar
  86. Walsby AE (1980) A square bacterium. Nature 283:69–71CrossRefGoogle Scholar
  87. Wilhelm LJ, Tripp HJ, Givan SA, Smith DP, Giovannoni SJ (2007) Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data. Biol Direct 2:27PubMedCentralPubMedCrossRefGoogle Scholar
  88. Yoon JH, Kang SJ, Oh TK (2007) Reclassification of Marinococcus albus Hao et al. 1985 as Salimicrobium album gen. nov., comb. nov. and Bacillus halophilus Ventosa et al. 1990 as Salimicrobium halophilum comb. nov., and description of Salimicrobium luteum sp. nov. Int J Syst Evol Microbiol 57:2406–2411PubMedCrossRefGoogle Scholar
  89. Zhaxybayeva O, Stepanauskas R, Mohan NR, Papke RT (2013) Cell sorting analysis of geographically separated hypersaline environments. Extremophiles 17:265–275PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Antonio Ventosa
    • 1
  • Ana Beatriz Fernández
    • 1
  • María José León
    • 1
  • Cristina Sánchez-Porro
    • 1
  • Francisco Rodriguez-Valera
    • 2
  1. 1.Department of Microbiology and Parasitology, Faculty of PharmacyUniversity of SevillaSevillaSpain
  2. 2.Evolutionary Genomics Group, Departamento de Producción Vegetal y MicrobiologíaUniversidad Miguel HernándezAlicanteSpain

Personalised recommendations