Extremophiles

, Volume 18, Issue 4, pp 629–639 | Cite as

A systematic strain selection approach for halotolerant and halophilic bioprocess development: a review

  • Joao M. Uratani
  • Rajkumari Kumaraswamy
  • Jorge Rodríguez
Review

Abstract

Halotolerant and halophilic microorganisms have potential applications in a number of very relevant environmental and industrial bioprocesses, from wastewater treatment to production of value-added chemicals. While numerous microbial strains have been identified and studied in the literature, the number of those successfully used in industrial applications is comparatively small. Literature is abundant in terms of characterisation of specific strains under a microbiology perspective; however, there is a need for studies tackling the selection of strains for bioprocess applications. This review presents a database of over 200 halophilic and halotolerant prokaryote strains compiled from taxonomic microbiological resources and classified by trophic groups as well as by their salinity, pH and temperature tolerance and optimum ranges, all under a process development perspective. In addition to this database, complementary systematic approaches for the selection of suitable strains for a given trophic activity and environmental conditions are also presented. Both the database and the proposed selection approaches together constitute a general tool for process development that allows researchers to systematically search for strains capable of specific substrate degradations under specific conditions (pH, T, salinity). Many exiting established halotolerant and halophilic environmental and industrial bioprocesses appear to have been developed following strategies in line with the systematic approaches proposed here.

Keywords

Strain selection Halophiles Extremophiles in biotechnology Industrial applications 

List of abbreviations

C2M

Conditions-to-Microorganisms approach for strain selection

M2S

Microorganisms-to-Substrates approach for strain selection

PHA

Polyhydroxyalkanoates

S2C

Substrates-to-Conditions approach for strain selection

Supplementary material

792_2014_659_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2899 kb)
792_2014_659_MOESM2_ESM.xlsm (526 kb)
Supplementary material 2 (XLSM 525 kb)

References

  1. Abou-Elela SI, Kamel MM, Fawzy ME (2010) Biological treatment of saline wastewater using a salt-tolerant microorganism. Desalination 250:1–5. doi:10.1016/j.desal.2009.03.022 CrossRefGoogle Scholar
  2. Abrevaya XC, Sacco N, Mauas PJD, Cortón E (2011) Archaea-based microbial fuel cell operating at high ionic strength conditions. Extremophiles. doi:10.1007/s00792-011-0394-z PubMedGoogle Scholar
  3. Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291–294. doi:10.1038/nature02922 PubMedCrossRefGoogle Scholar
  4. Ali M, Sreekrishnan TR (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5:175–196. doi:10.1016/S1093-0191(00)00055-1 CrossRefGoogle Scholar
  5. Amoozegar MA, Hamedi J, Dadashipour M, Shariatpanahi S (2005) Effect of salinity on the tolerance to toxic metals and oxyanions in native moderately halophilic spore-forming bacilli. World J Microbiol Biotechnol 21:1237–1243. doi:10.1007/s11274-005-1804-0 CrossRefGoogle Scholar
  6. Amoozegar MA, Ghasemi A, Razavi MR, Naddaf S (2007) Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochem 42:1475–1479. doi:10.1016/j.procbio.2007.07.001 CrossRefGoogle Scholar
  7. Amoozegar MA, Hajighasemi M, Hamedi J et al (2011) Azo dye decolorization by halophilic and halotolerant microorganisms. Ann Microbiol 61:217–230. doi:10.1007/s13213-010-0144-y CrossRefGoogle Scholar
  8. Andrei A-Ş, Banciu HL, Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9. doi:10.1111/j.1574-6968.2012.02526.x PubMedCrossRefGoogle Scholar
  9. Asad S, Amoozegar MA, Pourbabaee AA et al (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088. doi:10.1016/j.biortech.2006.08.020 PubMedCrossRefGoogle Scholar
  10. Atlas RM (1991) Microbial hydrocarbon degradation—bioremediation of oil spills. J Chem Technol Biotechnol 52:149–156. doi:10.1002/jctb.280520202 CrossRefGoogle Scholar
  11. Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31:178–182. doi:10.1016/0025-326X(95)00113-2 CrossRefGoogle Scholar
  12. Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22:618–626. doi:10.1016/j.copbio.2011.06.010 PubMedCrossRefGoogle Scholar
  13. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dyecontaining effluents: a review. Bioresour Technol 58:217–227. doi:10.1016/S0960-8524(96)00113-7 CrossRefGoogle Scholar
  14. Bonete MJ, Martínez-Espinosa RM (2011) Enzymes from halophilic archaea: open questions. In: Ventosa A, Oren A, Ma Y (eds) Halophiles hypersaline environ. Springer, Heidelberg, pp 359–371CrossRefGoogle Scholar
  15. Calvo C, Manzanera M, Silva-Castro GA et al (2009) Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci Total Environ 407:3634–3640. doi:10.1016/j.scitotenv.2008.07.008 PubMedCrossRefGoogle Scholar
  16. Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5:189–193. doi:10.1007/s10123-002-0089-5 PubMedCrossRefGoogle Scholar
  17. DasSarma P, Coker JA, Huse V et al. (2010) Halophiles, industrial applications. Encycl. Ind. Biotechnol, 1–43. doi:10.1002/9780470054581.eib439
  18. Demirjian DC, Morís-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151. doi:10.1016/S1367-5931(00)00183-6 PubMedCrossRefGoogle Scholar
  19. Detkova EN, Boltyanskaya YV (2007) Osmoadaptation of haloalkaliphilic bacteria: role of osmoregulators and their possible practical application. Microbiology 76:511–522. doi:10.1134/S0026261707050013 CrossRefGoogle Scholar
  20. Durack E, Alonso-Gomez M, Wilkinson MG (2008) Salt: a review of its role in food science and public health. Curr Nutr Food Sci 4:290–297CrossRefGoogle Scholar
  21. Durai G, Rajasirnrnan M (2011) Biological treatment of tannery wastewater––a review. J Environ Sci Technol 4:1–17CrossRefGoogle Scholar
  22. Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8:649–655. doi:10.1016/j.mib.2005.10.015 PubMedCrossRefGoogle Scholar
  23. Empadinhas N, da Costa M (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11:151–161. doi:10.2436/im.v11i3.9665 PubMedGoogle Scholar
  24. Falb M, Müller K, Königsmaier L et al (2008) Metabolism of halophilic archaea. Extremophiles 12:177–196. doi:10.1007/s00792-008-0138-x PubMedCentralPubMedCrossRefGoogle Scholar
  25. Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Bioresour Technol 79:251–262. doi:10.1016/S0960-8524(01)00028-1 PubMedCrossRefGoogle Scholar
  26. Grabowski A, Nercessian O, Fayolle F et al (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443. doi:10.1016/j.femsec.2005.05.007 PubMedCrossRefGoogle Scholar
  27. Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359:1249–1267. doi:10.1098/rstb.2004.1502 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Guo J, Zhou J, Wang D et al (2008) A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation 19:15–19. doi:10.1007/s10532-007-9110-1 PubMedCrossRefGoogle Scholar
  29. Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70PubMedGoogle Scholar
  30. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352. doi:10.1038/nature02134 PubMedCrossRefGoogle Scholar
  31. Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182. doi:10.1038/nrmicro1348 PubMedCrossRefGoogle Scholar
  32. Huang J, Sun B, Zhang X (2010) Electricity generation at high ionic strength in microbial fuel cell by a newly isolated Shewanella marisflavi EP1. Appl Microbiol Biotechnol 85:1141–1149. doi:10.1007/s00253-009-2259-2 PubMedCrossRefGoogle Scholar
  33. Jain RM, Mody KH, Keshri J, Jha B (2011) Biological neutralization of chlor-alkali industry wastewater. Mar Pollut Bull 62:2377–2383. doi:10.1016/j.marpolbul.2011.08.034 PubMedCrossRefGoogle Scholar
  34. James BR, Petura JC, Vitale RJ, Mussoline GR (1997) Oxidation–reduction chemistry of chromium: relevance to the regulation and remediation of chromate-contaminated soils. J Soil Contam 6:569–580. doi:10.1080/15320389709383590 CrossRefGoogle Scholar
  35. Janssen AJH, Lens PNL, Stams AJM et al (2009) Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci Total Environ 407:1333–1343. doi:10.1016/j.scitotenv.2008.09.054 PubMedCrossRefGoogle Scholar
  36. Jeong SH, Lee JH, Jung JY et al (2013) Halomonas cibimaris sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Antonie Van Leeuwenhoek 103:503–512. doi:10.1007/s10482-012-9832-x PubMedCrossRefGoogle Scholar
  37. Jung M-J, Roh SW, Kim M-S, Bae J-W (2010) Lentibacillus jeotgali sp. nov., a halophilic bacterium isolated from traditional Korean fermented seafood. Int J Syst Evol Microbiol 60:1017–1022. doi:10.1099/ijs.0.013565-0 PubMedCrossRefGoogle Scholar
  38. Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99:4635–4641. doi:10.1016/j.biortech.2007.06.058 PubMedCrossRefGoogle Scholar
  39. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326. doi:10.1016/j.mib.2010.02.006 PubMedCrossRefGoogle Scholar
  40. Kim JG, Dixon JB (2002) Oxidation and fate of chromium in soils. Soil Sci Plant Nutr 48:483–490. doi:10.1080/00380768.2002.10409230 CrossRefGoogle Scholar
  41. Kniemeyer O, Musat F, Sievert SM et al (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449:898–901. doi:10.1038/nature06200 PubMedCrossRefGoogle Scholar
  42. Kolekar YM, Pawar SP, Gawai KR et al (2008) Decolorization and degradation of Disperse Blue 79 and Acid Orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil. Bioresour Technol 99:8999–9003. doi:10.1016/j.biortech.2008.04.073 PubMedCrossRefGoogle Scholar
  43. Krzywinski MI, Schein JE, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res. doi:10.1101/gr.092759.109 PubMedCentralPubMedGoogle Scholar
  44. Kumar A, Kumar R (2007) Biological neutralization of highly alkaline textile industrial wastewater. US Patent 7,179,633, 20 Feb 2007Google Scholar
  45. Lee H-S (2013) Diversity of halophilic archaea in fermented foods and human intestines and their application. J Microbiol Biotechnol 23:1645–1653. doi:10.4014/jmb.1308.08015 PubMedCrossRefGoogle Scholar
  46. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682. doi:10.1016/j.watres.2006.08.027 PubMedCrossRefGoogle Scholar
  47. Lentzen G, Schwarz T (2006) Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72:623–634. doi:10.1007/s00253-006-0553-9 PubMedCrossRefGoogle Scholar
  48. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518. doi:10.1016/j.tim.2006.10.003 PubMedCrossRefGoogle Scholar
  49. Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192. doi:10.1021/es0605016 PubMedCrossRefGoogle Scholar
  50. Ma Y, Galinski EA, Grant WD et al (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981. doi:10.1128/AEM.01868-10 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Margesin R, Schinner F (1999) Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol 74:381–389. doi:10.1002/(SICI)1097-4660(199905)74:5<381:AID-JCTB59>3.0.CO;2-0 CrossRefGoogle Scholar
  52. Margesin R, Schinner F (2001a) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663. doi:10.1007/s002530100701 PubMedCrossRefGoogle Scholar
  53. Margesin R, Schinner F (2001b) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83. doi:10.1007/s007920100184 PubMedCrossRefGoogle Scholar
  54. Margesin R, Hämmerle M, Tscherko D (2007) Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microb Ecol 53:259–269. doi:10.1007/s00248-006-9136-7 PubMedCrossRefGoogle Scholar
  55. Mariángel L, Aspé E, Cristina Martí M, Roeckel M (2008) The effect of sodium chloride on the denitrification of saline fishery wastewaters. Environ Technol 29:871–879. doi:10.1080/09593330802015318 PubMedCrossRefGoogle Scholar
  56. Marsh TL, McInerney MJ (2001) Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Appl Environ Microbiol 67:1517–1521. doi:10.1128/AEM.67.4.1517-1521.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  57. McKew BA, Coulon F, Yakimov MM et al (2007) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ Microbiol 9:1562–1571. doi:10.1111/j.1462-2920.2007.01277.x PubMedCrossRefGoogle Scholar
  58. Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54. doi:10.1007/s00284-002-3889-0 PubMedCrossRefGoogle Scholar
  59. Miller LG, Oremland RS (2008) Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes. Extremophiles 12:837–848. doi:10.1007/s00792-008-0191-5 PubMedCrossRefGoogle Scholar
  60. Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681. doi:10.1128/AEM.67.4.1675-1681.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Mosquera-Corral A, Campos JL, Sanchez M et al (2003) Combined system for biological removal of nitrogen and carbon from a fish cannery wastewater. J Environ Eng 129:826–833CrossRefGoogle Scholar
  62. Namwong S, Tanasupawat S, Smitinont T et al (2005) Isolation of Lentibacillus salicampi strains and Lentibacillus juripiscarius sp. nov. from fish sauce in Thailand. Int J Syst Evol Microbiol 55:315–320. doi:10.1099/ijs.0.63272-0 PubMedCrossRefGoogle Scholar
  63. Namwong S, Tanasupawat S, Lee KC, Lee J-S (2009) Oceanobacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 59:2254–2259. doi:10.1099/ijs.0.007161-0 PubMedCrossRefGoogle Scholar
  64. Nandakumar R, Yoshimune K, Wakayama M, Moriguchi M (2003) Microbial glutaminase: biochemistry, molecular approaches and applications in the food industry. J Mol Catal B Enzym 23:87–100. doi:10.1016/S1381-1177(03)00075-4 CrossRefGoogle Scholar
  65. Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225. doi:10.1128/AEM.70.2.1222-1225.2004 PubMedCrossRefGoogle Scholar
  66. O’Rourke D, Connolly S (2003) Just oil? The distribution of environmental and social impacts of oil production and consumption. Annu Rev Environ Resour 28:587–617. doi:10.1146/annurev.energy.28.050302.105617
  67. Oren A (2006) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes. Springer, New York, pp 263–282CrossRefGoogle Scholar
  68. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834. doi:10.1080/09593330903370026 PubMedCrossRefGoogle Scholar
  69. Owens JW (1991) The hazard assessment of pulp and paper effluents in the aquatic environment: a review. Environ Toxicol Chem 10:1511–1540. doi:10.1002/etc.5620101202 CrossRefGoogle Scholar
  70. Pakdeeto A, Tanasupawat S, Thawai C et al (2007) Lentibacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 57:364–369. doi:10.1099/ijs.0.64315-0 PubMedCrossRefGoogle Scholar
  71. Park E-J, Chang H-W, Kim K-H et al (2009) Application of quantitative real-time PCR for enumeration of total bacterial, archaeal, and yeast populations in kimchi. J Microbiol 47:682–685. doi:10.1007/s12275-009-0297-1 PubMedCrossRefGoogle Scholar
  72. Pastor JM, Salvador M, Argandoña M et al (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28:782–801. doi:10.1016/j.biotechadv.2010.06.005 PubMedCrossRefGoogle Scholar
  73. Pezeshki SR, Hester MW, Lin Q, Nyman JA (2000) The effects of oil spill and clean-up on dominant US Gulf coast marsh macrophytes: a review. Environ Pollut 108:129–139. doi:10.1016/S0269-7491(99)00244-4 PubMedCrossRefGoogle Scholar
  74. Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater–a review. Sci Total Environ 333:37–58. doi:10.1016/j.scitotenv.2004.05.017 PubMedCrossRefGoogle Scholar
  75. Prince RC (1993) Petroleum spill bioremediation in marine environments. Crit Rev Microbiol 19:217–240. doi:10.3109/10408419309113530 PubMedCrossRefGoogle Scholar
  76. Prince RC, Parkerton TF, Lee C (2007) The primary aerobic biodegradation of gasoline hydrocarbons. Environ Sci Technol 41:3316–3321PubMedCrossRefGoogle Scholar
  77. Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2009) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696. doi:10.1007/s00253-009-2397-6 PubMedCrossRefGoogle Scholar
  78. Ravot G, Masson J-M, Lefèvre F (2006) 34 Applications of extremophiles: the industrial screening of extremophiles for valuable biomolecules. In: Fred A, Rainey D of BSLSUBR (eds) Methods microbiol. Academic, USA, pp 785–813Google Scholar
  79. Rintala JA, Puhakka JA (1994) Anaerobic treatment in pulp-and paper-mill waste management: a review. Bioresour Technol 47:1–18CrossRefGoogle Scholar
  80. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. doi:10.1016/S0960-8524(00)00080-8 PubMedCrossRefGoogle Scholar
  81. Rodriguez-Valera F, Lillo JAG, Antón J, Meseguer I (1991) Biopolymer production by haloferax mediterranei. In: Rodriguez-Valera F (ed) Gen Appl. Asp. Halophilic Microorg. Springer, USA, pp 373–380CrossRefGoogle Scholar
  82. Roh SW, Nam Y-D, Chang H-W et al (2007) Natronococcus jeotgalisp. nov., a halophilic archaeon isolated from shrimp jeotgal, a traditional fermented seafood from Korea. Int J Syst Evol Microbiol 57:2129–2131. doi:10.1099/ijs.0.65120-0 PubMedCrossRefGoogle Scholar
  83. Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252. doi:10.1016/S0958-1669(02)00316-6 PubMedCrossRefGoogle Scholar
  84. Rozendal RA, Hamelers HVM, Rabaey K et al (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459. doi:10.1016/j.tibtech.2008.04.008 PubMedCrossRefGoogle Scholar
  85. Satomi M, Kimura B, Mizoi M et al (1997) Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47:832–836. doi:10.1099/00207713-47-3-832 PubMedCrossRefGoogle Scholar
  86. Satpute SK, Banat IM, Dhakephalkar PK et al (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450. doi:10.1016/j.biotechadv.2010.02.006 PubMedCrossRefGoogle Scholar
  87. Schwibbert K, Marin-Sanguino A, Bagyan I et al (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environ Microbiol 13:1973–1994. doi:10.1111/j.1462-2920.2010.02336.x PubMedCentralPubMedCrossRefGoogle Scholar
  88. Singh SP, Raval VH, Purohit MK et al (2012) Haloalkaliphilic bacteria and actinobacteria from the saline habitats: new opportunities for biocatalysis and bioremediation. In: Prakash A, Satyanarayana T, Johri BN (eds) Microorg. Environ. Manag. Springer, Netherlands, pp 415–429CrossRefGoogle Scholar
  89. Sorokin DY, Banciu HL, Robertson LA, Kuenen JG (2006) Haloalkaliphilic sulfur-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes. Springer, New York, pp 969–984CrossRefGoogle Scholar
  90. Strous M, Kuenen JG, Fuerst JA et al (2002) The anammox case-a new experimental manifesto for microbiological eco-physiology. Antonie Van Leeuwenhoek 81:693–702PubMedCrossRefGoogle Scholar
  91. Sudarno U, Bathe S, Winter J, Gallert C (2010) Nitrification in fixed-bed reactors treating saline wastewater. Appl Microbiol Biotechnol 85:2017–2030. doi:10.1007/s00253-009-2301-4 CrossRefGoogle Scholar
  92. Tanasupawat S, Pakdeeto A, Namwong S et al (2006) Lentibacillus halophilus sp. nov., from fish sauce in Thailand. Int J Syst Evol Microbiol 56:1859–1863. doi:10.1099/ijs.0.63997-0 PubMedCrossRefGoogle Scholar
  93. Tanasupawat S, Namwong S, Kudo T, Itoh T (2007) Piscibacillus salipiscarius gen. nov., sp. nov., a moderately halophilic bacterium from fermented fish (pla-ra) in Thailand. Int J Syst Evol Microbiol 57:1413–1417. doi:10.1099/ijs.0.64945-0 PubMedCrossRefGoogle Scholar
  94. Tebbe A, Schmidt A, Konstantinidis K et al (2009) Life-style changes of a halophilic archaeon analyzed by quantitative proteomics. Proteomics 9:3843–3855. doi:10.1002/pmic.200800944 PubMedCrossRefGoogle Scholar
  95. Tekin E, Ateş M, Kahraman Ö (2012) Poly-3-hydroxybutyrate-producing extreme halophilic archaeon: haloferax sp. MA10 isolated from Çamaltı Saltern. İzmir. Turk J Biol 36:303–312. doi:10.3906/biy-1102-16 Google Scholar
  96. Thompson G, Swain J, Kay M, Forster C (2001) The treatment of pulp and paper mill effluent: a review. Bioresour Technol 77:275–286. doi:10.1016/S0960-8524(00)00060-2 PubMedCrossRefGoogle Scholar
  97. Venosa AD, Haines JR, Suidan MT et al. (1996) Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol 30(5):1764–1775. doi:10.1021/es950754r
  98. Ventosa A, Márquez MC, Garabito MJ, Arahal DR (1998a) Moderately halophilic gram-positive bacterial diversity in hypersaline environments. Extremophiles 2:297–304. doi:10.1007/s007920050072 PubMedCrossRefGoogle Scholar
  99. Ventosa A, Nieto JJ, Oren A (1998b) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedCentralPubMedGoogle Scholar
  100. Verma B (2012) Neutralization of alkaline waste water from pulp and paper industry by alkaliphiles. Dissertation, University of ThaparGoogle Scholar
  101. Von Canstein H, Li Y, Timmis KN et al (1999) Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Appl Environ Microbiol 65:5279–5284Google Scholar
  102. Walsh AR, O’Halloran J (1996) Chromium speciation in tannery effluent—II. Speciation in the effluent and in a receiving estuary. Water Res 30:2401–2412. doi:10.1016/0043-1354(96)00174-1 CrossRefGoogle Scholar
  103. Wittbrodt PR, Palmer CD (1996) Effect of temperature, ionic strength, background electrolytes, and Fe(III) on the reduction of hexavalent chromium by soil humic substances. Environ Sci Technol 30:2470–2477. doi:10.1021/es950731c CrossRefGoogle Scholar
  104. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266. doi:10.1016/j.copbio.2007.04.006 PubMedCrossRefGoogle Scholar
  105. Yoon JH, Kang SS, Lee KC et al (2001) Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. Int J Syst Evol Microbiol 51:1087–1092. doi:10.1099/00207713-51-3-1087 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Joao M. Uratani
    • 1
  • Rajkumari Kumaraswamy
    • 1
  • Jorge Rodríguez
    • 1
  1. 1.Institute Center for Water and Environment (iWATER), Department of Chemical and Environmental Engineering (CEE)Masdar Institute of Science and TechnologyAbu DhabiUAE

Personalised recommendations