Advertisement

Extremophiles

, Volume 18, Issue 5, pp 825–834 | Cite as

Taxonomy of halophilic Archaea: current status and future challenges

  • Aharon OrenEmail author
Special Issue: Review 10th International Congress on Extremophiles
Part of the following topical collections:
  1. 10th International Congress on Extremophiles

Abstract

Several groups of Archaea, all Euryarchaeota, develop in hypersaline environments (from >10 % salt up to saturation). The cultured diversity of halophilic Archaea includes the family Halobacteriaceae of aerobic or facultative anaerobic, generally red-pigmented species (47 genera and 165 species as of February 2014) and seven representatives of four genera of methanogens, most of which obtain energy from methylated amines under anaerobic conditions. Metagenomic studies have identified an additional deep lineage of Archaea in salt lakes and ponds with brines approaching NaCl saturation. Genomic information is now available for representatives of these ‘Nanohaloarchaea’, but no members of this lineage have yet been cultured. Multilocus sequence analysis is becoming increasingly popular in taxonomic studies of the Halobacteriaceae, and such studies have demonstrated that recombination of genetic traits occurs at an extremely high frequency at least in some genera. Metagenomic studies in an Antarctic lake showed that large identical regions of up to 35 kb in length can be shared by members of different genera living together in the same environment. Such observations have important implications not only for the taxonomy of the Halobacteriaceae, but also for species concepts and questions on taxonomy and classification for prokaryotic microorganisms in general.

Keywords

Halobacteriaceae Halophilic methanogens Nanohaloarchaea Taxonomy Nomenclature Species concepts 

Abbreviations

ANI

Average nucleotide identity

MLSA

Multilocus sequence analysis

Hbt.

Halobacterum

Hfx.

Haloferax

Hht.

Halohasta

Hqr.

Haloquadratum

Hrr.

Halorubrum

References

  1. Amann G, Stetter KO, Llobet-Brossa E, Amann R, Antón J (2000) Direct proof for the presence and expression of two 5% different 16S rRNA genes in individual cells of Haloarcula marismortui. Extremophiles 4:373–376CrossRefPubMedGoogle Scholar
  2. Andrei A-Ş, Banciu HL, Oren A (2012) Metabolic diversity in Archaea living in saline ecosystems. FEMS Microbiol Lett 330:1–9CrossRefPubMedGoogle Scholar
  3. Arahal DR, Oren A, Ventosa A (2011) International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of Halobacteriaceae and Subcommittee on the taxonomy of Halomonadaceae. Minutes of the joint open meeting, 6 September 2011, Sapporo, Japan. Int J Syst Evol Microbiol 61:2792–2795CrossRefGoogle Scholar
  4. Bolhuis H, te Poele EM, Rodríguez-Valera F (2004) Isolation and cultivation of Walsby’s square archaeon. Environ Microbiol 6:1287–1291CrossRefPubMedGoogle Scholar
  5. Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genom 7:169CrossRefGoogle Scholar
  6. Boone DR (2001) Genus IV. Methanohalophilus Paterek and Smith 1988, 122VP. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 281–283Google Scholar
  7. Boone DR, Baker CC (2001) Genus VI. Methanosalsum gen. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 287–289Google Scholar
  8. Boone DR, Mathrani IM, Liu Y, Menaia JAGF, Mah RA, Boone JE (1993) Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int J Syst Bacteriol 43:430–437CrossRefGoogle Scholar
  9. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004a) Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol Lett 238:469–473PubMedGoogle Scholar
  10. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004b) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265PubMedCentralCrossRefPubMedGoogle Scholar
  11. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392CrossRefPubMedGoogle Scholar
  12. Casanueva A, Galada N, Baker GC, Grant WD, Heaphy S, Jones B, Yanhe M, Ventosa A, Blamey J, Cowan DA (2008) Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles 12:651–656CrossRefPubMedGoogle Scholar
  13. Chimileski S, Dolas K, Naor A, Gophna U, Papke RT (2014) Extracellular DNA metabolism in Haloferax volcanii. Frontiers Microbiol 5:57Google Scholar
  14. Cui H-L, Zhou P-J, Oren A, Liu S-J (2009) Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 13:31–37CrossRefPubMedGoogle Scholar
  15. Davidova IA, Harmsen HJM, Stams AJM, Belyaev SS, Zehnder AJB (1997) Taxonomic description of Methanococcoides euhalobius and its transfer to the Methanohalophilus genus. Antonie van Leeuwenhoek 71:313–318CrossRefPubMedGoogle Scholar
  16. DeMaere MZ, Williams TJ, Allen MA, Brown MV, Gibson JAE, Rich J, Lauro FM, Dyall-Smith M, Davenport KW, Woyke T, Kyrpides NC, Tringe SG, Cavicchioli R (2013) High level of intergenera gene exchange shapes the evolution of haloarchaea in an isolated Antarctic lake. Proc Natl Acad Sci 110:16939–16944PubMedCentralCrossRefPubMedGoogle Scholar
  17. Dennis PP, Ziesche S, Mylvaganam S (1998) Transcription analysis of two disparate rRNA operons in the halophilic archaeon Haloarcula marismortui. J Bacteriol 180:4804–4813PubMedCentralPubMedGoogle Scholar
  18. Di Meglio L, Busalamen J, Pastore JI, Ballarin D, Nercessian D (2014) Hyperhalophilic archaeal biofilms: growth kinetics, structure, and antagonistic interaction in continuous culture. Biofouling 30:237–245CrossRefPubMedGoogle Scholar
  19. Franzmann PD, Stackebrandt E, Sanderson K, Volkman JK, Cameron DE, Stevenson PL, McMeekin TA, Burton HR (1988) Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol 11:20–27CrossRefGoogle Scholar
  20. Fröls S, Dyall-Smith M, Pfeifer F (2012) Biofilm formation by haloarchaea. Environ Microbiol 14:3159–3174CrossRefPubMedGoogle Scholar
  21. Ghai R, Fernández AB, Martin-Cuadrado A-B, Megumi Mizuno C, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodríguez-Valera F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135PubMedCentralCrossRefPubMedGoogle Scholar
  22. Gibson JAE, Miller MR, Davies NW, Neill P, Nichols DS, Volkmann JK (2005) Unsaturated diether lipids in the psychrotrophic archaeon Halorubrum lacusprofundi. Syst Evol Microbiol 28:19–26CrossRefGoogle Scholar
  23. Grant S, Grant WD, Jones BE, Kato C, Li L (1999) Noval archaeal phylotypes from an East African alkaline saltern. Extremophiles 3:139–145CrossRefPubMedGoogle Scholar
  24. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci 102:2567–2572PubMedCentralCrossRefPubMedGoogle Scholar
  25. Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 317–368Google Scholar
  26. Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodríguez-Valera F, Papke RT (2006) Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genom 7:171CrossRefGoogle Scholar
  27. Liu Y, Boone DR, Choy C (1990) Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int J Syst Bacteriol 40:111–116CrossRefGoogle Scholar
  28. López-López A, Benlloch S, Bonfá M, Rodríguez-Valera F, Mira A (2007) Intragenomic 16S DNA divergence in Haloarcula marismortui is an adaptation to different temperatures. J Mol Evol 65:687–969CrossRefPubMedGoogle Scholar
  29. Magrum LJ, Luehrsen KR, Woese CR (1978) Are extreme halophiles actually “bacteria”? J Mol Evol 11:1–8CrossRefPubMedGoogle Scholar
  30. Mathrani IM, Boone DR, Mah RA, Fox GE, Lau PP (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38:139–142CrossRefPubMedGoogle Scholar
  31. McGenity TJ (2010) Methanogens and methanogenesis in hypersaline environments. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, pp 665–680CrossRefGoogle Scholar
  32. Mevarech M, Hirsch-Twizer S, Goldman S, Yakobson E, Eisenberg H, Dennis PP (1989) Isolation and characterization of the rRNA gene clusters of Halobacterium marismortui. J Bacteriol 171:3479–3485PubMedCentralPubMedGoogle Scholar
  33. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R, Hashimoto T (2010) Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B (rpoB′ ) gene. Int J Syst Evol Microbiol 60:2398–2408CrossRefPubMedGoogle Scholar
  34. Minegishi H, Kamekura M, Kitajima-Ihara T, Nakasone K, Echigo A, Shimane Y, Usami R, Itoh T, Ihara K (2012) Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. Int J Syst Evol Microbiol 62:188–195CrossRefPubMedGoogle Scholar
  35. Mou Y-Z, Qiu X–X, Zhao M-L, Cui H-L, Oh D, Dyall-Smith ML (2012) Halohasta litorea gen. nov., and Halohasta litchfieldiae sp. nov., isolated from the Daliang aquaculture farm, China and from Deep Lake, Antarctica, respectively. Extremophiles 16:895–901CrossRefPubMedGoogle Scholar
  36. Naor A, Lapierre P, Mevarech M, Papke RT, Gophna U (2012) Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr Biol 22:1444–1448CrossRefPubMedGoogle Scholar
  37. Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE (2012) De novo assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93PubMedCentralCrossRefPubMedGoogle Scholar
  38. Nelson-Sathi S, Dagan T, Landan G, Janssen A, Steel M, McInterney JO, Deppenmeier U, Martin WF (2012) Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc Natl Acad Sci 109:20537–20542PubMedCentralCrossRefPubMedGoogle Scholar
  39. Oh D, Porter K, Russ B, Burns D, Dyall-Smith M (2010) Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles 14:161–169PubMedCentralCrossRefPubMedGoogle Scholar
  40. Ollivier B, Fardeau M-L, Cayol J-L, Magot M, Patel BKC, Prensier G, Garcia J-L (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828CrossRefPubMedGoogle Scholar
  41. Oren A (2012) Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 62:263–271CrossRefPubMedGoogle Scholar
  42. Oren A (2014a) Family Methanosarcinaceae. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, 4th edn. Springer, New YorkGoogle Scholar
  43. Oren A (2014b) Family Methanocalculaceae. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, 4th edn. Springer, New YorkGoogle Scholar
  44. Oren A (2014c) Family Halobacteriaceae. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, 4th edn. Springer, New YorkGoogle Scholar
  45. Oren A, Garrity GM (2014) Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie van Leeuwenhoek. doi: 10.1007/s10482-013-0084-1 PubMedGoogle Scholar
  46. Oren A, Ventosa A (2008) International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of Halobacteriaceae. Minutes of the meetings, 7 August 2008, Istanbul, Turkey. Int J Syst Evol Microbiol 58:2465–2467CrossRefGoogle Scholar
  47. Oren A, Ventosa A (2010) International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of Halobacteriaceae and Subcommittee on the taxonomy of Halomonadaceae. Minutes of the meeting 30 June 2010, Beijing, China. Int J Syst Evol Microbiol 60:2257–2259CrossRefGoogle Scholar
  48. Oren A, Ventosa A (2013) International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of Halobacteriaceae and Subcommittee on the taxonomy of Halomonadaceae. Minutes of the joint open meeting, 24 June 2013, Storrs, Connecticut, USA. Int J Syst Evol Microbiol 63:3540–3544PubMedCentralCrossRefPubMedGoogle Scholar
  49. Oren A, Ventosa A, Grant WD (1997) Proposal of minimal standards for the description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238CrossRefGoogle Scholar
  50. Oren A, Vreeland RH, Ventosa A (2007) International Committee on Systematics of Prokaryotes. Subcommittee on the taxonomy of Halobacteriaceae and Subcommittee on the taxonomy of Halomonadaceae. Minutes of the joint open meeting, 3 September 2007, Colchester, UK. Int J Syst Evol Microbiol 57:2975–2978CrossRefGoogle Scholar
  51. Oren A, Arahal DR, Ventosa A (2009) Emended descriptions of genera of the family Halobacteriaceae. Int J Syst Evol Microbiol 59:637–642CrossRefPubMedGoogle Scholar
  52. Papke RT, Gogarten JP (2012) How bacterial lineages emerge. Science 336:45–46CrossRefPubMedGoogle Scholar
  53. Papke RT, Koenig JE, Rodríguez-Valera F, Doolittle WF (2004) Frequent recombination in a saltern population of Halorubrum. Science 306:1928–1929PubMedGoogle Scholar
  54. Papke RT, Zhaxybayeva O, Feil EJ, Sommerfeld K, Muise D, Doolittle WF (2007) Searching for species in haloarchaea. Proc Natl Acad Sci 104:14092–14097PubMedCentralCrossRefPubMedGoogle Scholar
  55. Papke RT, White E, Reddy P, Weigel G, Kamekura M, Minegishi H, Usami R, Ventosa A (2011) A multilocus sequence analysis approach to the phylogeny and taxonomy of the Halobacteriales. Int J Syst Evol Microbiol 61:2984–2995CrossRefPubMedGoogle Scholar
  56. Paterek JR, Smith PH (1988) Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int J Syst Bacteriol 38:122–123CrossRefGoogle Scholar
  57. Rosenshine I, Tchelet R, Mevarech M (1989) The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245:1387–1389CrossRefPubMedGoogle Scholar
  58. Soppa J (2013) Evolutionary advantages of polyploidy in halophilic archaea. Biochem Soc Trans 41:339–343CrossRefPubMedGoogle Scholar
  59. Spring S, Scheuner C, Lapidus A, Lucas S, Glavina Del Rio T, Tice H, Copeland A, Cheng JF, Chen F, Nolan M, Saunders E, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Lykidis A, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Goodwin L, Detter JC, Brettin T, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2010) The genome sequence of Methanohalophilus mahii SLPT reveals differences in the energy metabolism among members of the Methanosarcinaceae inhabiting freshwater and saline environments. Archaea 2010:690737PubMedCentralCrossRefPubMedGoogle Scholar
  60. Trüper HG (2005) Is ‘localimania’ becoming a fashion for prokaryote taxonomists? Int J Syst Evol Microbiol 45:1753CrossRefGoogle Scholar
  61. Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD, Kamekura M (2002) Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452CrossRefPubMedGoogle Scholar
  62. Walsby AE (1980) A square bacterium. Nature 283:69–71CrossRefGoogle Scholar
  63. Wilharm T, Zhilina TN, Hummel P (1991) DNA–DNA hybridization of methylotrophic halophilic methanogenic bacteria and transfer of Methanococcus halophilus VP to the genus Methanohalophilus as Methanohalophilus halophilus comb. nov. Int J Syst Bacteriol 41:558–562CrossRefGoogle Scholar
  64. Yu IK, Kawamura F (1987) Halomethanococcus doii gen. nov., sp. nov.: an obligately halophilic methanogenic bacterium from solar salt ponds. J Gen Appl Microbiol 33:303–310CrossRefGoogle Scholar
  65. Zhilina TN (1983) A new obligate halophilic methane-producing bacterium. Mikrobiologiya 52:375–382Google Scholar
  66. Zhilina TN (2001) Genus III. Methanohalobium Zhilina and Zavarzin 1988, 136VP (Effective publication: Zhilina and Zavarzin 1987a, 467). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 279–281Google Scholar
  67. Zhilina TN, Zavarzin GA (1987) Methanohalobium evestigatus n. gen., n. sp. The extremely halophilic methanogenic Archaebacterium. Dokl Akad Nauk SSSR 293:464–468 (in Russian)Google Scholar
  68. Zhilina TN, Zavarzina DG, Kevbrin VV, Kolganova TV (2013) Methanocalculus natronophilus sp. nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae. Microbiology (Russ) 82:686–694Google Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Plant and Environmental Sciences, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations