, Volume 18, Issue 3, pp 545–560 | Cite as

Biosignatures in chimney structures and sediment from the Loki’s Castle low-temperature hydrothermal vent field at the Arctic Mid-Ocean Ridge

  • Andrea JaeschkeEmail author
  • Benjamin Eickmann
  • Susan Q. Lang
  • Stefano M. Bernasconi
  • Harald Strauss
  • Gretchen L. Früh-Green
Original Paper


We investigated microbial life preserved in a hydrothermally inactive silica–barite chimney in comparison with an active barite chimney and sediment from the Loki’s Castle low-temperature venting area at the Arctic Mid-Ocean Ridge (AMOR) using lipid biomarkers. Carbon and sulfur isotopes were used to constrain possible metabolic pathways. Multiple sulfur (δ34S, ∆33S) isotopes on barite over a cross section of the extinct chimney range between 21.1 and 22.5 ‰ in δ34S, and between 0.020 and 0.034 ‰ in Δ33S, indicating direct precipitation from seawater. Biomarker distributions within two discrete zones of this silica–barite chimney indicate a considerable difference in abundance and diversity of microorganisms from the chimney exterior to the interior. Lipids in the active and inactive chimney barite and sediment were dominated by a range of 13C-depleted unsaturated and branched fatty acids with δ13C values between −39.7 and −26.7 ‰, indicating the presence of sulfur-oxidizing and sulfate-reducing bacteria. The majority of lipids (99.5 %) in the extinct chimney interior that experienced high temperatures were of archaeal origin. Unusual glycerol monoalkyl glycerol tetraethers (GMGT) with 0–4 rings were the dominant compounds suggesting the presence of mainly (hyper-) thermophilic archaea. Isoprenoid hydrocarbons with δ13C values as low as −46 ‰ also indicated the presence of methanogens and possibly methanotrophs.


Hydrothermal Silica chimney Barite Biomarker GDGT GMGT Multiple S isotopes 



We would like to thank the crew and Rolf Birger Pedersen (cruise leader) onboard the R/V G.O. Sars during the cruises in 2009 and 2010 for their assistance at sea. Tamara Baumberger and Ingunn Hindenes Thorseth are thanked for precious help with sampling. We would also like to thank an anonymous reviewer for constructive comments that considerably improved the quality of the manuscript. This work was supported by the Swiss National Science Foundation (SNF projects 20MA21-115916 and 200020-132804) and by the EuroMARC programme of the European Science Foundation (ESF) through the ‘H2DEEP—Ultraslow spreading and hydrogen based deep biosphere’ project.


  1. Alperin MJ, Hoehler TM (2009) Anaerobic methane oxidation by archaea/slufate reducing bacteria aggregates: 2 Isotopic constraints. Am J Sci 309:958–984CrossRefGoogle Scholar
  2. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243PubMedCrossRefGoogle Scholar
  3. Baumberger T (2011) Volatiles in marine hydrothermal systems. PhD thesis, ETH Zurich, Switzerland (
  4. Bian L, Hinrichs KU, Xie T, Brassell SC, Iversen N, Fossing H, Jørgensen BB, Hayes JM (2001) Algal and archaeal polyisoprenoids in a recent marine sediment: Molecular isotopic evidence for anaerobic oxidation of methane. Geochim Geophys Geosys 2. doi:  10.1029/2000GC000112
  5. Blöchl E, Burggraf S, Fiala G, Laurerer G, Huber G, Huber R, Rachel R, Segerer A, Stetter KO, Volkl B (1995) Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World J Microbiol Biotechnol 11:9–16PubMedCrossRefGoogle Scholar
  6. Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Nat Acad Sci 101:11111–11116PubMedCentralPubMedCrossRefGoogle Scholar
  7. Blumenberg M, Seifert R, Petersen S, Michaelis W (2007) Biosignatures present in a hydrothermal massive sulfide from the Mid-Atlantic Ridge. Geobiology 5:435–450CrossRefGoogle Scholar
  8. Blumenberg M, Seifert R, Buschmann B, Kiel S, Thiel V (2012) Biomarkers reveal diverse microbial communities in black smoker sulfides from Turtle Pits (Mid-Atlantic Ridge, Recent) and Yaman Kasy (Russia, Silurian). Geomicrobiol J 29:66–75CrossRefGoogle Scholar
  9. Boyd ES, Pearson A, Pi YD, Li WJ, Zhang YG, He L, Zhang CL, Geesey GG (2011) Temperature and pH controls on glycerol dibiphytanyl glycerol tetraether lipid composition in the hyperthermophilic crenarchaeon Acidilobus sulfurireducens. Extremophiles 15:59–65PubMedCrossRefGoogle Scholar
  10. Burgess EA, Unrine JM, Mills GL, Romanek CS, Wiegel J (2012) Comparative geochemical and microbiological characterization of two thermal pools in the Uzon Caldera, Kamchatka, Russia. Microbial Ecol 63:471–489CrossRefGoogle Scholar
  11. Canfield DE, Raiswell R (1999) Evolution of the sulfur cycle. Am J Sci 299:7–9CrossRefGoogle Scholar
  12. Corliss JB, Dymond J, Gordon LI, Edmond JM, Herzen RPV, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, Vanandel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083PubMedCrossRefGoogle Scholar
  13. De la Torre JR, Walker CB, Ingalls AE, Konneke M, Stahl DA (2008) Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 10:810–818PubMedCrossRefGoogle Scholar
  14. Dowling NJE, Widdel F, White DC (1986) Phospholipid ester-linked fatty-acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria. J Gen Microbiol 132:1815–1825Google Scholar
  15. Eickmann B, Thorseth IH, Peters M, Strauss H, Bröcker M, Pedersen RB (2014) Barite in hydrothermal environments as a recorder of sub-seafloor processes: A multiple isotope study from the Loki’s Castle vent field. GeobiologyGoogle Scholar
  16. Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300CrossRefGoogle Scholar
  17. Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419CrossRefGoogle Scholar
  18. Elvert M, Hopmans EC, Treude T, Boetius A, Suess E (2005) Spatial variations of methanotrophic consortia in cold methane seeps: implications from a high-resolution molecular and isotopic approach. Geobiology 3:195–209CrossRefGoogle Scholar
  19. Gibson RA, van der Meer MTJ, Hopmans EC, Reysenbach AL, Schouten S, Sinninghe Damsté JS (2013) Comparison of intact polar lipid with microbial community composition of vent deposits of the Rainbow and Lucky Strike hydrothermal fields. Geobiology 11:72–85PubMedCrossRefGoogle Scholar
  20. Guezennec J, Ortega-Morales O, Raguenes G, Geesey G (1998) Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents. FEMS Microbiol Ecol 26:89–99CrossRefGoogle Scholar
  21. Hannington MD, Scott SD (1988) Mineralogy and geochemistry of a hydrothermal silica–sulfide–sulfate spire in the caldera of Axial Seamount, Juan de Fuca Ridge. Can Min 26:603–625Google Scholar
  22. Hayes JM (2001) Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. In: Valley J, Cole D (eds) Stable isotope geochemistry 43. Mineral Soc Am, WashingtonGoogle Scholar
  23. Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at the modern seafloor a review. Ore Geol Rev 10:95–115CrossRefGoogle Scholar
  24. Herzig PM, Becker KP, Stoffers P, Bäcker H, Blum N (1988) Hydrothermal silica chimney fields in the Galapagos Spreading Center at 86° W. Earth Planet Sci Lett 89:261–272CrossRefGoogle Scholar
  25. Hopmans EC, Schouten S, Pancost RD, van der Meer MTJ, Sinninghe Damsté JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rap Comm Mass Spectrom 14:585–589CrossRefGoogle Scholar
  26. Hopmans EC, Weijers JWH, E Schefuß, Herford L, Schouten S, Sinninghe Damsté JS (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224:107–116CrossRefGoogle Scholar
  27. House CH, Schopf JW, Stetter KO (2003) Carbon isotopic fractionation by Archaeans and other thermophilic prokaryotes. Org Geochem 34:345–356CrossRefGoogle Scholar
  28. Hu J, Meyers PA, Chen G, Peng P, Qunhui Y (2012) Archaeal and bacterial glycerol dialkyl glycerol tetraethers in sediments from the Eastern Lau Spreading Center, South Pacific Ocean. Org Geochem 43:162–167CrossRefGoogle Scholar
  29. Jaeschke A, Jorgensen SL, Bernasconi SM, Pedersen RB, Thorseth IH, Früh-Green GL (2012) Microbial diversity of Loki’s Castle black smokers at the Arctic Mid-Ocean Ridge. Geobiology. doi: 10.1111/gbi.12009 PubMedGoogle Scholar
  30. Janecky DR, Seyfried WE (1984) Formation of massive sulfide deposits on oceanic ridge crests—incremental reaction models for mixing between hydrothermal solutions and seawater. Geochim Cosmochim Acta 48:2723–2738CrossRefGoogle Scholar
  31. Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934PubMedCrossRefGoogle Scholar
  32. Kato S, Takano Y, Kakegawa T, Oba H, Inoue K, Kobayashi C, Utsumi M, Marumo K, Kobayashi K, Ito Y, Ishibashi JI, Yamagishi A (2010) Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough. Appl Environ Microbiol 76:2968–2979PubMedCentralPubMedCrossRefGoogle Scholar
  33. Kellermann MY, Wegener G, Elvert M, Yoshinaga MY, Lin YS, Holler T, Mollar XP, Knittel K, Hinrichs KU (2012) Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities. Proc Nat Soc Am 109:19321–19326CrossRefGoogle Scholar
  34. Kelly DS, Baross JA, Delaney JR (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu Rev Earth Planet Sci 30:385–491CrossRefGoogle Scholar
  35. Kletzin A, Urich A, Müller F, Bandeiras TM, Gomes CM (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36:77–91PubMedCrossRefGoogle Scholar
  36. Knappy CS, Chong JPJ, Keely BJ (2009) Rapid discrimination of archaeal tetraether lipid cores by liquid chromatography–tandem mass spectrometry. J Amer Soc Mass Spec 20:51–59CrossRefGoogle Scholar
  37. Knappy CS, Nunn CEM, Morgan HW, Keely BJ (2011) The major lipid cores of the archaeon Ignisphaera aggregans: implications for the phylogeny and biosynthesis of glycerol monoalkyl glycerol tetraether isoprenoid lipids. Extremophiles 15:517–528PubMedCrossRefGoogle Scholar
  38. Koga Nakano M (2008) A dendrogram of archaea based on lipid component parts composition and its relationship to rRNA phylogeny. Sys Appl Microbiol 31:169–182CrossRefGoogle Scholar
  39. Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotech Biochem 69:2019–2034CrossRefGoogle Scholar
  40. Kongsrud JA, Rapp HT (2012) Nicomache (Loxochona) lokii sp.nov. (Annelida: Polychaeta: Maldanidae) from the Loki’s Castle vent field: an important structure builder in an Arctic vent system. Polar Biol 35:161–170CrossRefGoogle Scholar
  41. Kormas KA, Tivey MK, Von Damm K, Teske A (2006) Bacterial and archaeal phylotypes associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9°N, East Pacific Rise). Environ Microbiol 8:909–920PubMedCrossRefGoogle Scholar
  42. Lai D, Springstead JR, Monbouquette HG (2008) Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus. Extremophiles 12:271–278PubMedCrossRefGoogle Scholar
  43. Lilley MD, Butterfield DA, Olson EJ, Lupton JE, Macko SA, Mcduff RE (1993) Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364:45–47CrossRefGoogle Scholar
  44. Lincoln SA, Bradley AS, Newman SA, Summons RE (2013) Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in chimneys of the Lost City Hydrothermal Field. Org Geochem 60:45–53CrossRefGoogle Scholar
  45. Londry KL, Jahnke LL, Des Marais DJ (2004) Stable carbon isotope ratios of lipid biomarkers of sulfate reducing bacteria. Appl Environ Microbiol 70:745–751PubMedCentralPubMedCrossRefGoogle Scholar
  46. Londry KL, Dawson KG, Grover HD, Summons RE, Bradley AS (2008) Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri. Org Geochem 39:608–621CrossRefGoogle Scholar
  47. Lopez-Garcia P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D (2003) Bacterial diversity in hydrothermal sediment and epsilonbacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5:961–976PubMedCrossRefGoogle Scholar
  48. McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61:4375–4391PubMedCrossRefGoogle Scholar
  49. Miroshnichenko ML (2004) Thermophilic microbial communities of deep-sea hydrothermal vents. Microbiology 73:1–13CrossRefGoogle Scholar
  50. Morii H, Eguchi T, Nishihara M, Kakinuma K, Konig H, Koga Y (1998) A novel ether core lipid with H-shaped C-80-isoprenoid hydrocarbon chain from the hyperthermophilic methanogen Methanothermus fervidus. Biochim Biophys Acta 1390:339–345PubMedCrossRefGoogle Scholar
  51. Noguchi T, Shinjo R, Ito M, Takada J, Oomori T (2011) Barite geochemistry from hydrothermal chimneys of the Okinawa Trough: insight into chimney formation and fluid/sediment interaction. J Mineral Petrol Sci 106:26–35CrossRefGoogle Scholar
  52. Ono S, Wing B, Johnston DT, Farquhar J, Rumble D (2006) Mass-dependent fractionation of quadrupole stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim Cosmochim Acta 70:2238–2252CrossRefGoogle Scholar
  53. Ono S, Shanks WC III, Rouxel OJ, Rumble D (2007) S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71:1170–1182CrossRefGoogle Scholar
  54. Ono S, Keller N, Rouxel O, Alt JC (2012) Sulfur-33 constraints on the origin of secondary pyrite in altered oceanic basement. Geochim Cosmochim Acta 87:323–340CrossRefGoogle Scholar
  55. Pancost RD, Sinninghe Damsté JS, De Lint S, Van Der Maarel MJEC, Gottschal JC (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132PubMedCentralPubMedCrossRefGoogle Scholar
  56. Paytan A, Mearon S, Cobb K, Kastner M (2002) Origin of marine barite deposits: Sr and S isotope characterization. Geology 30:747–750CrossRefGoogle Scholar
  57. Pearson A, Huang Z, Ingalls AE, Romanek CS, Wiegel J, Freeman KH, Smittenberg RH, Zhang CL (2004) Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol 70:5229–5237PubMedCentralPubMedCrossRefGoogle Scholar
  58. Pedersen RB, Rapp HT, Thorseth IH, Lilley MD, Barriga FJAS, Baumberger T, Flesland K, Fonseca R, Fruh-Green GL, Jorgensen SL (2010) Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nature Communications 1Google Scholar
  59. Pitcher A, Rychlik N, Hopmans EC, Spieck E, Rijpstra WIC, Ossebar J, Schouten S, Wagner M, Sinninghe Damsté JS (2010) Crenarchaeol dominates the membrane lipids of “Candidatus Nitrososphaera gargensis”, a thermophilic Group I.1b Archaeon. ISME J 4:542–552PubMedCrossRefGoogle Scholar
  60. Reysenbach AL, Cady SL (2001) Microbiology of ancient and modern hydrothermal systems. Trends Microbiol 9:79–86PubMedCrossRefGoogle Scholar
  61. Risatti JB, Rowland SJ, Yon DA, Maxwell JR (1984) Stereochemical studies of acyclic isoprenoids-XI. Lipids of methanogenic bacteria and possible contributions to sediments. Org Geochem 6:93–114CrossRefGoogle Scholar
  62. Schlitzer R (2013) Ocean Data View.
  63. Schönheit K, Schäfer T (1995) Metabolism of hyperthermophiles. World J Microbiol Biotechnol 11:26–57PubMedCrossRefGoogle Scholar
  64. Schouten S, Hopmans EC, Schefuss E, Sinninghe Damsté JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274CrossRefGoogle Scholar
  65. Schouten S, Wakeham SG, Hopmans EC, Sinninghe Damsté JS (2003) Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Appl Environ Microbiol 69:1680–1686PubMedCentralPubMedCrossRefGoogle Scholar
  66. Schouten S, van der Meer MTJ, Hopmans EC, Rijpstra WIC, Reysenbach AL, Ward DM, Sinninghe Damsté JS (2007) Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone National Park. Appl Environ Microbiol 73:6181–6191PubMedCentralPubMedCrossRefGoogle Scholar
  67. Schouten S, Baas M, Hopmans EC, Reysenbach AL, Sinninghe Damsté JS (2008a) Tetraether membrane lipids of Candidatus “Aciduliprofundum boonei”, a cultivated obligate thermoacidophilic euryarchaeote from deep-sea hydrothermal vents. Extremophiles 12:119–124PubMedCentralPubMedCrossRefGoogle Scholar
  68. Schouten S, Baas M, Hopmans EC, Sinninghe Damsté JS (2008b) An unusual isoprenoid teraether lipid in marine and lacustrine sediments. Org Geochem 39:1033–1038CrossRefGoogle Scholar
  69. Schouten S, Hopmans EC, Sinninghe Damsté JS (2013) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids. Org Geochem 54:19–61CrossRefGoogle Scholar
  70. Schrenk MO, Kelley DS, Delaney JR, Baross JA (2003) Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl Environ Microbiol 69:3580–3592PubMedCentralPubMedCrossRefGoogle Scholar
  71. Shanks WCP, Morgan LA, Balistrieri L, Alt JC (2007) Hydrothermal fluids, siliceous hydrothermal deposits, and hydrothermally altered sediments in Yellowstone Lake. USGS publicationGoogle Scholar
  72. Sinninghe Damsté JS, Rijpstra WIC, Hopmans EC, Weijers JWH, Foesel BU, Overmann J, Dedysh SN (2011) 13,16-dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria Subdivisions 1 and 3. Appl Environ Microbiol 77:4147–4154PubMedCentralCrossRefGoogle Scholar
  73. Steen IH, Thorseth IH, Roalkvam I, Dahle H, Stokke R, Pedersen RB (2011) Structure and function of microbial communities associated with low-temperature hydrothermal venting and formation of barite chimneys at Loki’s Castle vent field. Abstract. In: Goldschmidt conference, Florence, ItalyGoogle Scholar
  74. Stetter KO, Gaag G (1983) Reduction of molecular sulfur by methanogenic bacteria. Nature 305:309–311CrossRefGoogle Scholar
  75. Sugai A, Uda I, Itoh YH, Itoh T (2004) The core lipid composition of the 17 strains of hyperthermophilic archaea, Thermococcales. J Oleo Sci 53:41–44CrossRefGoogle Scholar
  76. Suzuki Y, Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Microbial diversity in inactive chimney structures from deep-sea hydrothermal systems. Microbial Ecol 47:186–196CrossRefGoogle Scholar
  77. Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629PubMedCentralPubMedCrossRefGoogle Scholar
  78. Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J, Michaelis W (1999) Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochim Cosmochim Acta 63:3959–3966CrossRefGoogle Scholar
  79. Thode HG, Monster J, Dunford HB (1961) Sulphur isotope geochemistry. Geochim Cosmochim Acta 25:159–174CrossRefGoogle Scholar
  80. Tivey MK (1995) The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy—insights from modeling transport and reaction. Geochim Cosmochim Acta 59:1933–1949CrossRefGoogle Scholar
  81. Torres ME, Bohrmann G, Dubé TE, Poole FG (2003) Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins. Geology 31:897–900CrossRefGoogle Scholar
  82. Uda I, Sugai A, Itoh YH, Itoh T (2001) Variation in molecular species of polar lipids from Thermoplasma acidophilum depends on growth temperature. Lipids 36:103–105PubMedCrossRefGoogle Scholar
  83. Uda I, Sugai A, Itoh YH, Itoh T (2004) Variation in molecular species of core lipids from the order Thermoplasmatales strains depend on growth temperature. J Oleo Sci 53:399–404CrossRefGoogle Scholar
  84. Urabe T, Kusakabe M (1990) Barite silica chimneys from the Sumisu Rift, Izu-Bonin Arc: possible analog to hematitic chert associated with Kuroko deposits. Earth Planet Sci Lett 100:283–290CrossRefGoogle Scholar
  85. van de Vossenberg JLCM, Driessen AJM, Konings WN (1998) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2:163–170PubMedCrossRefGoogle Scholar
  86. Weijers JWH, Schouten S, van den Donker JC, Hopmans EC, Sinninghe Damsté JS (2007) Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta 71:703–713CrossRefGoogle Scholar
  87. Zhang CL, Huang ZY, Cantu J, Pancost RD, Brigmon RL, Lyons TW, Sassen R (2005) Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Appl Environ Microbiol 71:2106–2112PubMedCentralPubMedCrossRefGoogle Scholar
  88. Zhang CL, Pearson A, Li YL, Mills G, Wiegel J (2006) Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution. Appl Environ Microbiol 72:4419–4422PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Andrea Jaeschke
    • 1
    • 5
    Email author
  • Benjamin Eickmann
    • 2
    • 6
  • Susan Q. Lang
    • 1
    • 7
  • Stefano M. Bernasconi
    • 3
  • Harald Strauss
    • 4
  • Gretchen L. Früh-Green
    • 1
  1. 1.Department of Earth Sciences, Institute of Geochemistry and PetrologyETH ZurichZurichSwitzerland
  2. 2.Department of Earth Science, Centre for GeobiologyUniversity of BergenBergenNorway
  3. 3.Department of Earth Sciences, Geological InstituteETH ZurichZurichSwitzerland
  4. 4.Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität MünsterMünsterGermany
  5. 5.Alfred Wegener Institute for Polar- and Marine ResearchBremerhavenGermany
  6. 6.Department of GeologyUniversity of JohannesburgJohannesburgSouth Africa
  7. 7.Department of Earth and Ocean SciencesUniversity of South CarolinaColumbiaUSA

Personalised recommendations