, Volume 18, Issue 2, pp 399–413 | Cite as

Spatial and temporal distribution of archaeal diversity in meromictic, hypersaline Ocnei Lake (Transylvanian Basin, Romania)

  • Andreea Baricz
  • Cristian Coman
  • Adrian Ştefan Andrei
  • Vasile Muntean
  • Zsolt Gyula Keresztes
  • Manuela Păuşan
  • Mircea Alexe
  • Horia Leonard Banciu
Original Paper


Saline, meromictic lakes with significant depth are usually formed as a result of salt mining activity. Ocnei Lake is one of the largest Transylvanian (Central Romania) neutral, hypersaline lake of man-made origin. We aimed to survey the seasonal dynamics of archaeal diversity in the water column of Ocnei Lake by employing microbiological methods as well as molecular techniques based on the sequence analysis of the 16S rRNA gene. We found that archaeal diversity in the water column increased with depth and salinity, with 8 OTUs being detected in the epilimnion compared to 21 found in the chemocline, and 32 OTUs in the monimolimnion. Down to 3.5 m depth, the archaeal community was markedly dominated by the presence of an unclassified archaeon sharing 93 % sequence identity to Halogeometricum spp. At the chemocline, the shift in archaeal community composition was associated with an increase in salinity, the main factor affecting the vertical distribution of archaeal assemblages. It appears that the microoxic and hypersaline monimolimnion is populated by several major haloarchaeal taxa, with minor fluctuations in their relative abundances throughout all seasons. The culturable diversity was reasonably correlated to the dominant OTUs obtained by molecular methods. Our results indicate that Ocnei Lake represents a relatively stable extreme habitat, accommodating a diverse and putatively novel archaeal community, as 30 % of OTUs could not be classified at the genus level.


Chemocline 16S rRNA gene clone library Epilimnion Halobacteriaceae Monimolimnion 



This work was supported by grants of the Romanian National Authority for Scientific Research, CNCS–UEFIS-CDI, project numbers PN-II-ID-PCE-2011-3-0546 and PN-II-ID-PCE-2011-3-0765. We thank Dr. Cosmin Sicora for technical support in qPCR analysis. We are grateful to Dr. Ovidiu Mera for the permission to enter the study area, and to Prof. Elena Rakosy and Prof. Constantin Crăciun for their consent to use the microscopy facilities.

Supplementary material

792_2013_625_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1262 kb)


  1. Alexe M (2010) Studiul lacurilor sărate din Depresiunea Transilvaniei. Ed. Presa Universitară Clujeană, Cluj Napoca (In Romanian)Google Scholar
  2. Alexe M, Furtună P (2012) Natural and anthropic risks in the area of Durgău-Valea Sărată Turda salt lakes. In: Gâştescu P, Lewis W Jr, Breţcan P (eds) Water resources and wetlands. Tulcea, Romania, pp 244–247Google Scholar
  3. Alinei R, Ionica A, Cheratoiu C, Cicu A, Gheorghiţa D, Guzu D, Falamas R, Bucurenciu C, Arimie B, Mironescu M, Oprean L (2006) Isolation of halophilic microorganisms in the saline lakes from Ocna Sibiului and anlaysis of red pigments production. Acta Univ Cibiensis E Food Technol 10:21–33Google Scholar
  4. Amoozegar MA, Makhdoumi-Kakhki A, Shahzadeh Fazeli SA, Azarbaijani R, Ventosa A (2012) Halopenitus persicus gen. nov., sp. nov., an archaeon from an inland salt lake. Int J Syst Evol Microbiol 62:1932–1936PubMedCrossRefGoogle Scholar
  5. Andrei AŞ, Banciu HL, Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9PubMedCrossRefGoogle Scholar
  6. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220PubMedCrossRefGoogle Scholar
  7. Atlas MR (2004) Handbook of microbiological media, 3rd edn. CRC Press, LondonCrossRefGoogle Scholar
  8. Bayly I, Williams WD (1973) Inland waters and their ecology. Longman Australia, MelbourneGoogle Scholar
  9. Benlloch S, López-López A, Casamayor EO, Øvreås L, Goddard V, Daae FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodríguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360PubMedCrossRefGoogle Scholar
  10. Boehrer B, Schultze M (2008) Stratification of lakes. Rev Geophys 46: RG2005Google Scholar
  11. Borsodi AK, Felföldi T, Máthé I, Bognár V, Knáb M, Krett G, Jurecska L, Tóth EM, Márialigeti K (2013) Phylogenetic diversity of bacterial and archaeal communities inhabiting the saline Lake Red located in Sovata, Romania. Extremophiles 17:87–98PubMedCrossRefGoogle Scholar
  12. Bowman JP, McCammon SA, Rea SM, McMeekin TA (2000) The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol Lett 183:81–88PubMedCrossRefGoogle Scholar
  13. Bulgăreanu V (1996) Protection and management of anthroposaline lakes in Romania. Lakes Reserv Res Manag 2:211–229CrossRefGoogle Scholar
  14. Burns DG, Janssen PH, Itoh T, Kamekura M, Echigo A, Dyall-Smith ML (2010) Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer. Int J Syst Evol Microbiol 60:1196–1199PubMedCrossRefGoogle Scholar
  15. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336PubMedCentralPubMedCrossRefGoogle Scholar
  16. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270Google Scholar
  17. Comeau AM, Harding T, Galand PE, Vincent WF, Lovejoy C (2012) Vertical distribution of microbial communities in a perennially stratified Arctic lake with saline, anoxic bottom waters. Sci Rep 2:604PubMedCentralPubMedCrossRefGoogle Scholar
  18. Crognale S, Máthé I, Cardone V, Stazi SR, Ráduly B (2013) Halobacterial community analysis of Mierlei saline lake in Transylvania (Romania). Geomicrobiology 30:801–812CrossRefGoogle Scholar
  19. Cui HL, Gao X, Yang X, Xu XW (2010a) Halolamina pelagica gen. nov., sp. nov., a new member of the family Halobacteriaceae. Int J Syst Evol Microbiol 61:1617–1621PubMedCrossRefGoogle Scholar
  20. Cui HL, Yang X, Gao X, Li XY, Xu XW, Zhou YG, Liu HC, Zhou PJ (2010b) Halogeometricum rufum sp. nov., a halophilic archaeon from a marine solar saltern, and emended description of the genus Halogeometricum. Int J Syst Evol Microbiol 60:2613–2617PubMedCrossRefGoogle Scholar
  21. Cytryn E, Minz D, Oremland RS, Cohen Y (2000) Distribution and diversity of archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar lake, Sinai, Egypt). Appl Environ Microbiol 66:3269–3276PubMedCentralPubMedGoogle Scholar
  22. Dimitriu PA, Pinkart HC, Peyton BM, Mormile MR (2008) Spatial and temporal patterns in the microbial diversity of a meromictic soda lake in Washington State. Appl Environ Microbiol 74:4877–4888PubMedCentralPubMedGoogle Scholar
  23. Einen J, Thorseth IH, Ovreås L (2008) Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy. FEMS Microbiol Lett 282:182–187PubMedCrossRefGoogle Scholar
  24. Elevi Bardavid R, Khristo P, Oren A (2008) Interrelation between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 12:5–14PubMedCrossRefGoogle Scholar
  25. Enache M, Itoh T, Kamekura M, Teodosiu G, Dumitru L (2007) Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake. Int J Syst Evol Microbiol 57:393–397PubMedCrossRefGoogle Scholar
  26. Enache M, Itoh T, Kamekura M, Popescu G, Dumitru L (2008) Halophilic archaea isolated from man-made young (200 years) salt lakes in Slănic, Prahova, Romania. Cent Eur J Biol 3:388–395CrossRefGoogle Scholar
  27. Falb M, Müller K, Königsmaier L, Oberwinkler T, Horn P, von Gronau S, Gonzalez O, Pfeiffer F, Bornberg-Bauer E, Oesterhelt D (2008) Metabolism of halophilic archaea. Extremophiles 12:177–196PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hammer Ø, Harper DAT, Ryan P (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4.
  29. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042PubMedCentralPubMedGoogle Scholar
  30. Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621PubMedCrossRefGoogle Scholar
  31. Keresztes ZG, Felföldi T, Somogyi B, Székely G, Dragos N, Márialigeti K, Bartha C, Vörös L (2012) First record of picophytoplankton diversity in Central European hypersaline lakes. Extremophiles 16:759–769PubMedCrossRefGoogle Scholar
  32. La Cono V, La Spada G, Arcadi E, Placenti F, Smedile F, Ruggeri G, Michaud L, Raffa C, De Domenico E, Sprovieri M, Mazzola S, Genovese L, Giuliano L, Slepak VZ, Yakimov MM (2013) Partaking of Archaea to biogeochemical cycling in oxygen-deficient zones of meromictic saline Lake Faro (Messina, Italy). Environ Microbiol 15:1717–1733PubMedCrossRefGoogle Scholar
  33. Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, New York, pp 115–175Google Scholar
  34. Lauro FM, DeMaere MZ, Yau S, Brown MV, Ng C, Wilkins D, Raftery MJ, Gibson JA, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R (2011) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5:879–895PubMedCrossRefGoogle Scholar
  35. Lay CY, Mykytczuk NC, Niederberger TD, Martineau C, Greer CW, Whyte LG (2012) Microbial diversity and activity in hypersaline high Arctic spring channels. Extremophiles 16:177–191PubMedCrossRefGoogle Scholar
  36. Lentini V, Gugliandolo C, Maugeri TL (2012) Vertical distribution of Archaea and Bacteria in a meromictic lake as determined by fluorescent in situ hybridization. Curr Microbiol 64:66–74PubMedCrossRefGoogle Scholar
  37. Makhdoumi-Kakhki A, Amoozegar MA, Bagheri M, Ramezani M, Ventosa A (2012a) Haloarchaeobius iranensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline lake. Int J Syst Evol Microbiol 62:1021–1026PubMedCrossRefGoogle Scholar
  38. Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B, Pašić L, Ventosa A (2012b) Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. Microbes Environ 27:87–93PubMedCrossRefGoogle Scholar
  39. Meuser JE, Baxter BK, Spear JR, Peters JW, Posewitz MC, Boyd ES (2013) Contrasting patterns of community assembly in the stratified water column of Great Salt Lake, Utah. Microb Ecol 66:268–280PubMedCrossRefGoogle Scholar
  40. Muntean V, Crişan D, Kiss S, Drăgan-Bularda M (1996) Enzymological classification of salt lakes in Romania. Int J Salt Lake Res 5:35–44CrossRefGoogle Scholar
  41. Mutlu MB, Martínez-García M, Santos F, Peña A, Guven K, Antón J (2008) Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol Ecol 65:474–483PubMedGoogle Scholar
  42. Muyzer G, Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 78:1332–1334Google Scholar
  43. Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72CrossRefGoogle Scholar
  44. Oren A (2002) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7PubMedGoogle Scholar
  45. Oren A (2013) Life at high salt and low oxygen: how do the Halobacteriaceae cope with low oxygen concentrations in their environment? Polyextremophiles, vol 27. Springer, Netherlands, pp 531–548CrossRefGoogle Scholar
  46. Oren A, Elevi R, Watanabe S, Ihara K, Corcelli A (2002) Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Syst Evol Microbiol 52:1831–1835PubMedCrossRefGoogle Scholar
  47. Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760PubMedCentralPubMedGoogle Scholar
  48. Podell S, Ugalde JA, Narasingarao P, Banfield JF, Heidelberg KB, Allen EE (2013) Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS ONE 8:e61692PubMedCentralPubMedCrossRefGoogle Scholar
  49. Scholten JC, Joye SB, Hollibaugh JT, Murrell JC (2005) Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes. Microb Ecol 50:29–39PubMedCrossRefGoogle Scholar
  50. Shannon C, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, ChampaignGoogle Scholar
  51. Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL (2010) Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Appl Environ Microbiol 76:757–768PubMedCentralPubMedGoogle Scholar
  52. Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 108:8420–8425PubMedCrossRefGoogle Scholar
  53. Wainø M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190PubMedCrossRefGoogle Scholar
  54. Yanan Y, Breitbart M, McNairnie P, Rohwer F (2006) FastGroupII: A web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7Google Scholar
  55. Youssef NH, Ashlock-Savage KN, Elshahed MS (2012) Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol 78:1332–1344PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Andreea Baricz
    • 1
    • 2
  • Cristian Coman
    • 2
  • Adrian Ştefan Andrei
    • 2
    • 3
  • Vasile Muntean
    • 1
  • Zsolt Gyula Keresztes
    • 4
  • Manuela Păuşan
    • 1
  • Mircea Alexe
    • 5
  • Horia Leonard Banciu
    • 1
    • 3
  1. 1.Department of Molecular Biology and Biotechnology, Faculty of Biology and GeologyBabeş-Bolyai UniversityCluj-NapocaRomania
  2. 2.National Institute of Research and Development for Biological Sciences (NIRDBS)Institute of Biological ResearchCluj-NapocaRomania
  3. 3.Institute for Interdisciplinary Research in Bio-Nano-SciencesBabeş-Bolyai UniversityCluj-NapocaRomania
  4. 4.Balaton Limnological Institute, Centre for Ecological ResearchHungarian Academy of SciencesTihanyHungary
  5. 5.Faculty of GeographyBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations