Advertisement

Extremophiles

, Volume 18, Issue 2, pp 295–309 | Cite as

Analysis of the complete genome of Fervidococcus fontis confirms the distinct phylogenetic position of the order Fervidicoccales and suggests its environmental function

  • Alexander V. Lebedinsky
  • Andrey V. Mardanov
  • Ilya V. Kublanov
  • Vadim M. Gumerov
  • Alexey V. Beletsky
  • Anna A. Perevalova
  • Salima Kh. Bidzhieva
  • Elizaveta A. Bonch-Osmolovskaya
  • Konstantin G. Skryabin
  • Nikolai V. Ravin
Original Paper

Abstract

The complete genome of the obligately anaerobic crenarchaeote Fervidicoccus fontis Kam940T, a terrestrial hot spring inhabitant with a growth optimum of 65–70 °C, has been sequenced and analyzed. The small 1.3-Mb genome encodes several extracellular proteases and no other extracellular hydrolases. No complete pathways of carbohydrate catabolism were found. Genes coding for enzymes necessary for amino acid transamination and further oxidative decarboxylation are present. The genome encodes no mechanisms of acyl-CoA and acetyl-CoA oxidation. Two [NiFe]-hydrogenases are encoded: a membrane-bound energy-converting hydrogenase and a cytoplasmic one. The ATP-synthase is H+-dependent as inferred from the amino acid sequence of the membrane rotor subunit. On the whole, genome analysis shows F. fontis to be a peptidolytic heterotroph with a restricted biosynthetic potential, which is in accordance with its phenotypic properties. The analysis of phylogenetic markers and of the distribution of best blastp hits of F. fontis proteins in the available genomes of Crenarchaeota supports distinct phylogenetic position of the order Fervidicoccales as a separate lineage adjoining the heterogeneous order Desulfurococcales. In addition, certain F. fontis genomic features correlate with its adaptation to temperatures of 60–80 °C, which are lower than temperatures preferred by Desulfurococcales.

Keywords

Fervidicoccus fontis Fervidicoccales Crenarchaeota Extreme thermophile Obligate anaerobe Complete genome 

Notes

Acknowledgments

We are grateful to Bettina Siebers and Biswarup Mukhopadhyay for helpful discussions. This work was supported by Ministry of Education and Sciences of Russia (contract 02.512.11.2201), the Russian Foundation for Basic Research (projects 11-04-01723-a and 11-04-00671-a), and by the program “Molecular and Cellular Biology” of the Russian Academy of Science within the projects of E.A.B.-O. and N.V.R. The work of I.V.K. on the analysis of hydrolases and glycosyltransferases was supported by grant #MК-7948.2010.4 from the advisory board for the research grants of the President of the Russian Federation.

References

  1. Abu-Qarn M, Yurist-Doutsch S, Giordano A, Trauner A, Morris HR, Hitchen P, Medalia O, Dell A, Eichler J (2007) Haloferax volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer. J Mol Biol 374:1224–1236PubMedCrossRefGoogle Scholar
  2. Adams MW, Holden JF, Menon AL, Schut GJ, Grunden AM, Hou C, Hutchins AM, Jenney FE Jr, Kim C, Ma K, Pan G, Roy R, Sapra R, Story SV, Verhagen MF (2001) Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183:716–724PubMedCentralPubMedCrossRefGoogle Scholar
  3. Anderson I, Rodriguez J, Susanti D, Porat I, Reich C, Ulrich LE, Elkins JG, Mavromatis K, Lykidis A, Kim E, Thompson LS, Nolan M, Land M, Copeland A, Lapidus A, Lucas S, Detter C, Zhulin IB, Olsen GJ, Whitman W, Mukhopadhyay B, Bristow J, Kyrpides N (2008) Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction. J Bacteriol 190:2957–2965PubMedCentralPubMedCrossRefGoogle Scholar
  4. Anderson IJ, Dharmarajan L, Rodriguez J, Hooper S, Porat I, Ulrich LE, Elkins JG, Mavromatis K, Sun H, Land M, Lapidus A, Lucas S, Barry K, Huber H, Zhulin IB, Whitman WB, Mukhopadhyay B, Woese C, Bristow J, Kyrpides N (2009) The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota. BMC Genomics 10:145PubMedCentralPubMedCrossRefGoogle Scholar
  5. Aono R, Sato T, Yano A, Yoshida S, Nishitani Y, Miki K, Imanaka T, Atomi H (2012) Enzymatic characterization of AMP phosphorylase and ribose-1,5-bisphosphate isomerase functioning in an archaeal AMP metabolic pathway. J Bacteriol 194:6847–6855PubMedCentralPubMedCrossRefGoogle Scholar
  6. Auchtung TA, Shyndriayeva G, Cavanaugh CM (2011) 16S rRNA phylogenetic analysis and quantification of Korarchaeota indigenous to the hot springs of Kamchatka, Russia. Extremophiles 15:105–116PubMedCrossRefGoogle Scholar
  7. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712PubMedCrossRefGoogle Scholar
  8. Bridger SL, Clarkson SM, Stirrett K, DeBarry MB, Lipscomb GL, Schut GJ, Westpheling J, Scott RA, Adams MW (2011) Deletion strains reveal metabolic roles for key elemental sulfur-responsive proteins in Pyrococcus furiosus. J Bacteriol 193:6498–6504PubMedCentralPubMedCrossRefGoogle Scholar
  9. Brochier-Armanet C, Forterre P (2007) Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers. Archaea 2:83–93PubMedCentralPubMedCrossRefGoogle Scholar
  10. Brochier-Armanet C, Forterre P, Gribaldo S (2011) Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 14:274–281PubMedCrossRefGoogle Scholar
  11. Brügger K (2007) The Sulfolobus database. Nucleic Acids Res 35:D413–D415PubMedCentralPubMedCrossRefGoogle Scholar
  12. Brügger K, Chen L, Stark M, Zibat A, Redder P, Ruepp A, Awayez M, She Q, Garrett RA, Klenk HP (2007) The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C. Archaea 2:127–135PubMedCentralPubMedCrossRefGoogle Scholar
  13. Burgess EA, Unrine JM, Mills GL, Romanek CS, Wiegel J (2012) Comparative geochemical and microbiological characterization of two thermal pools in the Uzon Caldera, Kamchatka, Russia. Microb Ecol 63:471–489PubMedCrossRefGoogle Scholar
  14. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238PubMedCentralPubMedCrossRefGoogle Scholar
  15. Childs AM, Mountain BW, O’Toole R, Stott MB (2008) Relating microbial community and physicochemical parameters of a hot spring: Champagne Pool, Wai-o-tapu, New Zealand. Geomicrobiol J 25:441–453CrossRefGoogle Scholar
  16. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641PubMedCentralPubMedCrossRefGoogle Scholar
  17. Desmond E, Brochier-Armanet C, Gribaldo S (2007) Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure. BMC Evol Biol 7:106PubMedCentralPubMedCrossRefGoogle Scholar
  18. Devine E, Holmqvist M, Stensjö K, Lindblad P (2009) Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120. BMC Microbiol 9:53PubMedCentralPubMedCrossRefGoogle Scholar
  19. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27RPubMedCrossRefGoogle Scholar
  20. Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658PubMedCrossRefGoogle Scholar
  21. Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363PubMedCrossRefGoogle Scholar
  22. Göker M, Held B, Lapidus A, Nolan M, Spring S, Yasawong M, Lucas S, Glavina Del Rio T, Tice H, Cheng JF, Goodwin L, Tapia R, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Brambilla E, Land M, Hauser L, Chang YJ, Jeffries CD, Brettin T, Detter JC, Han C, Rohde M, Sikorski J, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2010) Complete genome sequence of Ignisphaera aggregans type strain (AQ1.S1). Stand Genomic Sci 3:66–75PubMedCentralPubMedCrossRefGoogle Scholar
  23. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57PubMedCentralPubMedCrossRefGoogle Scholar
  24. Grunden AM, Jenney FE Jr, Ma K, Ji M, Weinberg MV, Adams MW (2005) In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus. Appl Environ Microbiol 71:1522–1530PubMedCentralPubMedCrossRefGoogle Scholar
  25. Guiral M, Tron P, Aubert C, Gloter A, Iobbi-Nivol C, Giudici-Orticoni MT (2005) A membrane-bound multienzyme, hydrogen-oxidizing, and sulfur-reducing complex from the hyperthermophilic bacterium Aquifex aeolicus. J Biol Chem 280:42004–42015PubMedCrossRefGoogle Scholar
  26. Hagen WR, Silva PJ, Amorim MA, Hagedoorn PL, Wassink H, Haaker H, Robb FT (2000) Novel structure and redox chemistry of the prosthetic groups of the iron-sulfur flavoprotein sulfide dehydrogenase from Pyrococcus furiosus; evidence for a [2Fe-2S] cluster with Asp(Cys)3 ligands. J Biol Inorg Chem 5:527–534PubMedCrossRefGoogle Scholar
  27. Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC (2005) Whole-genome prokaryotic phylogeny. Bioinformatics 21:2329–2335PubMedCrossRefGoogle Scholar
  28. Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575PubMedCrossRefGoogle Scholar
  29. Jormakka M, Yokoyama K, Yano T, Tamakoshi M, Akimoto S, Shimamura T, Curmi P, Iwata S (2008) Molecular mechanism of energy conservation in polysulfide respiration. Nat Struct Mol Biol 7:730–737CrossRefGoogle Scholar
  30. Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK, Matsumi R, Lebedinsky AV, Sokolova TG, Kozhevnikova DA, Cha SS, Kim SJ, Kwon KK, Imanaka T, Atomi H, Bonch-Osmolovskaya EA, Lee JH, Kang SG (2010) Formate-driven growth coupled with H2 production. Nature 467:352–355PubMedCrossRefGoogle Scholar
  31. Kim SM, Paek KH, Lee SB (2012) Characterization of NADP+-specific L-rhamnose dehydrogenase from the thermoacidophilic archaeon Thermoplasma acidophilum. Extremophiles 16:447–454PubMedCrossRefGoogle Scholar
  32. Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719PubMedCentralPubMedCrossRefGoogle Scholar
  33. Koski LB, Gray MW, Lang BF, Burger G (2005) AutoFACT: an automatic functional annotation and classification tool. BMC Bioinformatics 6:151PubMedCentralPubMedCrossRefGoogle Scholar
  34. Krafft T, Bokranz M, Klimmek O, Schröder I, Fahrenholz F, Kojro E, Kröger A (1992) Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur J Biochem 206:503–510PubMedCrossRefGoogle Scholar
  35. Kublanov IV, Bidjieva SKh, Mardanov AV, Bonch-Osmolovskaya EA (2009a) Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring. Int J Syst Evol Microbiol 59:1743–1747PubMedCrossRefGoogle Scholar
  36. Kublanov IV, Perevalova AA, Slobodkina GB, Lebedinsky AV, Bidzhieva SK, Kolganova TV, Kaliberda EN, Rumsh LD, Haertlé T, Bonch-Osmolovskaya EA (2009b) Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia). Appl Environ Microbiol 75:286–291PubMedCentralPubMedCrossRefGoogle Scholar
  37. Kvist T, Ahring BK, Westermann P (2007) Archaeal diversity in Icelandic hot springs. FEMS Microbiol Ecol 59:71–80PubMedCrossRefGoogle Scholar
  38. Laska S, Lottspeich F, Kletzin A (2003) Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology 149:2357–2371PubMedCrossRefGoogle Scholar
  39. Lee HS, Shockley KR, Schut GJ, Conners SB, Montero CI, Johnson MR, Chou CJ, Bridger SL, Wigner N, Brehm SD, Jenney FE Jr, Comfort DA, Kelly RM, Adams MW (2006) Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 188:2115–2125PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lillestøl RK, Redder P, Garrett RA, Brügger K (2006) A putative viral defence mechanism in archaeal cells. Archaea 2:59–72PubMedCentralPubMedCrossRefGoogle Scholar
  41. Lim JK, Kang SG, Lebedinsky AV, Lee JH, Lee HS (2010) Identification of a novel class of membrane-bound [NiFe]-hydrogenases in Thermococcus onnurineus NA1 by in silico analysis. Appl Environ Microbiol 76:6286–6289PubMedCentralPubMedCrossRefGoogle Scholar
  42. Lin X, Tang J (1990) Purification, characterization, and gene cloning of thermopsin, a thermostable acid protease from Sulfolobus acidocaldarius. J Biol Chem 265:1490–1495PubMedGoogle Scholar
  43. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964PubMedCentralPubMedCrossRefGoogle Scholar
  44. Ma K, Adams MW (1994) Sulfide dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus: a new multifunctional enzyme involved in the reduction of elemental sulfur. J Bacteriol 176:6509–6517PubMedCentralPubMedGoogle Scholar
  45. Ma K, Adams MW (2001) Ferredoxin:NADP oxidoreductase from Pyrococcus furiosus. Methods Enzymol 334:40–45PubMedCrossRefGoogle Scholar
  46. Ma K, Schicho RN, Kelly RM, Adams MW (1993) Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci USA 90:5341–5344PubMedCrossRefGoogle Scholar
  47. Ma K, Hutchins A, Sung SJ, Adams MW (1997) Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. Proc Natl Acad Sci USA 94:9608–9613PubMedCrossRefGoogle Scholar
  48. Mai X, Adams MW (1996) Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 178:5897–5903PubMedCentralPubMedGoogle Scholar
  49. Mardanov AV, Svetlitchnyi VA, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (2010) The genome sequence of the crenarchaeon Acidilobus saccharovorans supports a new order, Acidilobales, and suggests an important ecological role in terrestrial acidic hot springs. Appl Environ Microbiol 76:5652–5657PubMedCentralPubMedCrossRefGoogle Scholar
  50. Mardanov AV, Gumerov VM, Beletsky AV, Perevalova AA, Karpov GA, Bonch-Osmolovskaya EA, Ravin NV (2011a) Uncultured archaea dominate in the thermal groundwater of Uzon Caldera, Kamchatka. Extremophiles 15:365–372PubMedCrossRefGoogle Scholar
  51. Mardanov AV, Gumerov VM, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (2011b) Complete genome sequence of the thermoacidophilic crenarchaeon Thermoproteus uzoniensis 768-20. J Bacteriol 193:3156–3157PubMedCentralPubMedCrossRefGoogle Scholar
  52. Mardanov AV, Kochetkova TV, Beletsky AV, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (2012) Complete genome sequence of the hyperthermophilic cellulolytic crenarchaeon “Thermogladius cellulolyticus” 1633. J Bacteriol 194:4446–4447PubMedCentralPubMedCrossRefGoogle Scholar
  53. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122PubMedCentralPubMedCrossRefGoogle Scholar
  54. Meyer-Dombard DR, Shock EL, Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227CrossRefGoogle Scholar
  55. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182PubMedCrossRefGoogle Scholar
  56. Moon YJ, Kwon J, Yun SH, Lim HL, Kim MS, Kang SG, Lee JH, Choi JS, Kim SI, Chung YH (2012) Proteome analyses of hydrogen-producing hyperthermophilic archaeon Thermococcus onnurineus NA1 in different one-carbon substrate culture conditions. Mol Cell Proteomics 11(M111):015420PubMedGoogle Scholar
  57. Nakao A, Yoshihama M, Kenmochi N (2004) RPG: the Ribosomal Protein Gene database. Nucleic Acids Res 32:168–170CrossRefGoogle Scholar
  58. Pandit SB, Srinivasan N (2004) Identification and analysis of a new family of bacterial serine proteinases. In Silico Biol 4:563–572PubMedGoogle Scholar
  59. Perevalova AA, Kolganova TV, Birkeland NK, Schleper C, Bonch-Osmolovskaya EA, Lebedinsky AV (2008) Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol 74:7620–7628PubMedCentralPubMedCrossRefGoogle Scholar
  60. Perevalova AA, Bidzhieva SKh, Kublanov IV, Hinrichs KU, Liu XL, Mardanov AV, Lebedinsky AV, Bonch-Osmolovskaya EA (2010) Fervidicoccus fontis gen. nov., sp. nov., an anaerobic, thermophilic crenarchaeote from terrestrial hot springs, and proposal of Fervidicoccaceae fam. nov. and Fervidicoccales ord. nov. Int J Syst Evol Microbiol 60:2082–2088PubMedCrossRefGoogle Scholar
  61. Prokofeva MI, Kostrikina NA, Kolganova TV, Tourova TP, Lysenko AM, Lebedinsky AV, Bonch-Osmolovskaya EA (2009) Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. Int J Syst Evol Microbiol 59:3116–3122PubMedCrossRefGoogle Scholar
  62. Prokofeva M, Merkel A, Lebedinsky A, Bonch-Osmolovskaya E (2014) The family Acidilobaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes, 4th edn, vol 11, Other major lineages of Bacteria and the Archaea. Springer, New York (in press)Google Scholar
  63. Ravin NV, Mardanov AV, Beletsky AV, Kublanov IV, Kolganova TV, Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA, Skryabin KG (2009) Complete genome sequence of the anaerobic, protein-degrading hyperthermophilic crenarchaeon Desulfurococcus kamchatkensis. J Bacteriol 191:2371–2379PubMedCentralPubMedCrossRefGoogle Scholar
  64. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233PubMedCentralPubMedCrossRefGoogle Scholar
  65. Reid SJ, Abratt VR (2005) Sucrose utilisation in bacteria: genetic organisation and regulation. Appl Microbiol Biotechnol 67:312–321PubMedCrossRefGoogle Scholar
  66. Robinson NP, Bell SD (2007) Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proc Natl Acad Sci USA 104:5806–5811PubMedCrossRefGoogle Scholar
  67. Robinson NP, Dionne I, Lundgren M, Marsh VL, Bernander R, Bell SD (2004) Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116:25–38PubMedCrossRefGoogle Scholar
  68. Rodionov DA, Kurnasov OV, Stec B, Wang Y, Roberts MF, Osterman AL (2007) Genomic identification and in vitro reconstitution of a complete biosynthetic pathway for the osmolyte di-myo-inositol-phosphate. Proc Natl Acad Sci USA 104:4279–4284PubMedCrossRefGoogle Scholar
  69. Ryu SI, Park CS, Cha J, Woo EJ, Lee SB (2005) A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochim Biophys Res Commun 329:429–436CrossRefGoogle Scholar
  70. Sambou T, Dinadayala P, Stadthagen G, Barilone N, Bordat Y, Constant P, Levillain F, Neyrolles O, Gicquel B, Lemassu A, Daffé M, Jackson M (2008) Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: Biosynthesis and impact of the persistence in mice. Mol Microbiol 70:762–774PubMedCentralPubMedCrossRefGoogle Scholar
  71. Sato T, Atomi H, Imanaka T (2007) Archaeal type III RuBisCOs function in a pathway for AMP metabolism. Science 315:1003–1006PubMedCrossRefGoogle Scholar
  72. Say RF, Fuchs G (2010) Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464:1077–1081PubMedCrossRefGoogle Scholar
  73. Schut GJ, Zhou J, Adams MW (2001) DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: evidence for a new type of sulfur-reducing enzyme complex. J Bacteriol 183:7027–7036PubMedCentralPubMedCrossRefGoogle Scholar
  74. Schut GJ, Brehm SD, Datta S, Adams MW (2003) Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol 185:3935–3947PubMedCentralPubMedCrossRefGoogle Scholar
  75. Schut GJ, Bridger SL, Adams MW (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A- dependent NAD(P)H sulfur oxidoreductase. J Bacteriol 189:4431–4441PubMedCentralPubMedCrossRefGoogle Scholar
  76. Schut GJ, Boyd ES, Peters JW, Adams MW (2013) The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev 37:182–203PubMedGoogle Scholar
  77. Siebers B, Schönheit P (2005) Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 8:695–705PubMedCrossRefGoogle Scholar
  78. Siebers B, Brinkmann H, Dörr C, Tjaden B, Lilie H, van der Oost J, Verhees CH (2001) Archaeal fructose-1,6-bisphosphate aldolases constitute a new family of archaeal type class I aldolase. J Biol Chem 276(31):28710–28718PubMedCrossRefGoogle Scholar
  79. Siebers B, Tjaden B, Michalke K, Dörr C, Ahmed H, Zaparty M, Gordon P, Sensen CW, Zibat A, Klenk HP, Schuster SC, Hensel R (2004) Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J Bacteriol 186:2179–2194PubMedCentralPubMedCrossRefGoogle Scholar
  80. Siebers B, Zaparty M, Raddatz G, Tjaden B, Albers SV, Bell SD, Blombach F, Kletzin A, Kyrpides N, Lanz C, Plagens A, Rampp M, Rosinus A, von Jan M, Makarova KS, Klenk HP, Schuster SC, Hensel R (2011) The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota. PLoS ONE 6:e24222PubMedCentralPubMedCrossRefGoogle Scholar
  81. Spring S, Rachel R, Lapidus A, Davenport K, Tice H, Copeland A, Cheng JF, Lucas S, Chen F, Nolan M, Bruce D, Goodwin L, Pitluck S, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CC, Brettin T, Detter JC, Tapia R, Han C, Heimerl T, Weikl F, Brambilla E, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2010) Complete genome sequence of Thermosphaera aggregans type strain (M11TL). Stand Genomic Sci 2:245–259PubMedCentralPubMedCrossRefGoogle Scholar
  82. Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA (2005) The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345–354PubMedCrossRefGoogle Scholar
  83. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  84. Theodoratou E, Huber R, Böck A (2005) [NiFe]-hydrogenase maturation endopeptidase: structure and function. Biochem Soc Trans 33:108–111PubMedCrossRefGoogle Scholar
  85. Vetting MW, Frantom PA, Blanchard JS (2008) Structural and enzymatic analysis of MshA from Corynebacterium glutamicum: substrate-assisted catalysis. J Biol Chem 283:15834–15844PubMedCrossRefGoogle Scholar
  86. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272PubMedCrossRefGoogle Scholar
  87. Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann N Y Acad Sci 1125:1–43PubMedCrossRefGoogle Scholar
  88. Yokooji Y, Sato T, Fujiwara S, Imanaka T, Atomi H (2013) Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 195:1940–1948PubMedCentralPubMedCrossRefGoogle Scholar
  89. Zaparty M, Siebers B (2011) 4.10 Physiology, metabolism, and enzymology of thermoacidophiles. Reconstruction of the central carbon metabolic network of thermoacidophilic archaea. In: Horikoshi K (ed) Extremophiles handbook. Springer, New York, pp 601–639CrossRefGoogle Scholar
  90. Zeldovich KB, Berezovsky IN, Shakhnovich EI (2007) Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol 3:e5PubMedCentralPubMedCrossRefGoogle Scholar
  91. Zhang R, Zhang CT (2005) Identification and replication origins in archaeal genomes based on the Z-curve method. Archaea 1:335–346PubMedCentralPubMedCrossRefGoogle Scholar
  92. Zivanovic Y, Lopez P, Philippe H, Forterre P (2002) Pyrococcus genome comparison evidences chromosome shuffling-driven evolution. Nucleic Acids Res 30:1902–1910PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Alexander V. Lebedinsky
    • 1
  • Andrey V. Mardanov
    • 2
  • Ilya V. Kublanov
    • 1
  • Vadim M. Gumerov
    • 2
  • Alexey V. Beletsky
    • 2
  • Anna A. Perevalova
    • 1
  • Salima Kh. Bidzhieva
    • 1
  • Elizaveta A. Bonch-Osmolovskaya
    • 1
  • Konstantin G. Skryabin
    • 2
  • Nikolai V. Ravin
    • 2
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Centre “Bioengineering”Russian Academy of SciencesMoscowRussia

Personalised recommendations