Advertisement

Extremophiles

, Volume 17, Issue 4, pp 663–668 | Cite as

Halomonas socia sp. nov., isolated from high salt culture of Dunaliella salina

  • Jiao Cao
  • Huai-Yuan Ma
  • Hai-Yu Li
  • Kui-Rong Wang
  • Kun Ruan
  • Lin-Han BaiEmail author
Original Paper
  • 424 Downloads

Abstract

A moderately halophilic bacteria designed strain NY-011T was isolated from the high salt culture of Dunaliella salina in Chengdu of Sichuan Province, China. The isolate was Gram-negative, nonmotile, rod-shaped and 12.5–21.6 μm in length. Colonies on solid media are circular, wet, smooth and cream. The strain grew optimally at 37 °C, pH 7.0 and in the presence of 8 % NaCl. Acid was produced from glycerol, d-arabinose, glucose, trehalose, inositol, mannose, mannitol, sucrose, maltose and sorbitol. Catalase is produced but not oxidase. The major fatty acids are C18: 1ω7c (37.59 %), C19: 0 cyclo ω8c (18.29 %), C16: 0 (16.05 %) and C6: 0 (12.43 %). The predominant respiratory lipoquinone found in strain NY-011T is ubiquinone with nine isoprene units (Q-9). The genomic DNA G + C content of strain NY-011T was 62.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain NY-011T belonged to the genus Halomonas. The highest levels of 16S rRNA gene sequence similarity were found between the strain NY-011T and H. pantelleriensis (sequence similarity 98.43 %). However, the levels of DNA–DNA relatedness between them were only 23.1 %. In addition, the strain NY-011T had a phenotypic profile that readily distinguished it from H. pantelleriensis. The strain NY-011T therefore represents a new species of the genus Halomonas, for which the name Halomonas socia sp. nov. is proposed, with NY-011T (=CCTCC AB 2011033T = KCTC 23671T) as the type strain.

Keywords

Halomonas Halophilic bacteria Dunaliella salina Taxonomy Hypersaline 

Notes

Acknowledgments

The authors are grateful to the College of Life Sciences, Zhejiang University, and Dr. Agata Gambacorta for providing the reference strains. This work was supported by grants from the National Natural Science Foundation of China (Nos.: 30500006, 30970043).

Supplementary material

792_2013_549_MOESM1_ESM.doc (994 kb)
Supplementary material 1 (DOC 993 kb)
792_2013_549_MOESM2_ESM.doc (304 kb)
Supplementary material 2 (DOC 303 kb)

References

  1. Arahal DR, Ventosa A (2006) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes A handbook on the biology of bacteria, vol. 6, 3rd edn. Springer, New York, pp 811–835Google Scholar
  2. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ, Oren A, Bejar V, Quesada E, Ventosa A (2007) Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 57:2436–2446PubMedCrossRefGoogle Scholar
  3. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230PubMedCrossRefGoogle Scholar
  4. Cui XL, Mao PH, Tseng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptomonospora salina gen. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363PubMedGoogle Scholar
  5. De la Haba RR, Arahal DR, Márquez MC, Ventosa A (2010) Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. Int J Syst Evol Microbiol 60:737–748PubMedCrossRefGoogle Scholar
  6. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  7. Dobson SJ, Franzmann PD (1996) Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons, 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46:550–558CrossRefGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789CrossRefGoogle Scholar
  9. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  10. Franzmann PD, Wehmeyer U, Stackebrandt E (1988) Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11:16–19CrossRefGoogle Scholar
  11. Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Class III Halobacteria class. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol. 1, 2nd edn. Springer, New York, pp 294–334Google Scholar
  12. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B, Augsten K (1997) Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133PubMedCrossRefGoogle Scholar
  13. Guan TW, Xiao J, Zhao K, Luo XX, Zhang XP, Zhang LL (2010) Halomonas xinjiangensis sp. nov., a halotolerant bacterium isolated from a salt lake in Xinjiang. China. Int J Syst Evol Microbiol 60:349–352CrossRefGoogle Scholar
  14. Huss V, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192PubMedCrossRefGoogle Scholar
  15. Jahnke KD (1992) BASIC computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73Google Scholar
  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721PubMedCrossRefGoogle Scholar
  17. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  18. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306PubMedCrossRefGoogle Scholar
  19. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  20. Mata JA, Martínez-Cánovas MJ, Quesada E, Béjar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375PubMedCrossRefGoogle Scholar
  21. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  22. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrate procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  23. Okamoto T, Taguchi H, Nakamura K, Ikenaga H, Kuraishi H, Yamasato K (1993) Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160:333–337PubMedCrossRefGoogle Scholar
  24. Pick U, Karni L, Avron M (1986) Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina. Plant Physiol 81:92–96PubMedCrossRefGoogle Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  26. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. IDI Inc., NewyorkGoogle Scholar
  27. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  28. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266PubMedCrossRefGoogle Scholar
  29. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedGoogle Scholar
  30. Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495CrossRefGoogle Scholar
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Jiao Cao
    • 1
  • Huai-Yuan Ma
    • 1
  • Hai-Yu Li
    • 1
  • Kui-Rong Wang
    • 1
  • Kun Ruan
    • 1
  • Lin-Han Bai
    • 1
    Email author
  1. 1.Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations