, Volume 17, Issue 3, pp 535–543 | Cite as

Isolation and characterization of two novel alkalitolerant sulfidogens from a Thiopaq bioreactor, Desulfonatronum alkalitolerans sp. nov., and Sulfurospirillum alkalitolerans sp. nov

  • D. Y. SorokinEmail author
  • T. P. Tourova
  • G. Muyzer
Original Paper


Two obligately anaerobic sulfidogenic bacterial strains were isolated from the full-scale Thiopaq bioreactor in Lelystad (The Netherlands) removing H2S from biogas under oxygen-limiting and moderately haloalkaline conditions. Strain HSRB-L represents a dominant culturable sulfate-reducing bacterium in the reactor. It utilizes formate, H2 (with acetate as C-source) and lactate as e-donors, and sulfate, thiosulfate and sulfite as e-acceptors. It is haloalkalitolerant, with a pH range for lithotrophic growth from 7.5 to 9.7 (optimum at 8.5–9) and a salt range from 0.1 to 1.75 M total Na+ (optimum at 0.6 M). The strain is a member of the genus Desulfonatronum and is proposed as a novel species D. alkalitolerans. The second strain, strain HTRB-L1, represents a dominant thiosulfate/sulfur reducer in the reactor. It is an obligate anaerobe utilizing formate and H2 (with acetate as C-source), lactate, pyruvate and fumarate as e-donors, and thiosulfate (incomplete reduction), sulfur, arsenate and fumarate as e-acceptors. With lactate as e-donor it also grows as an ammonifyer in the presence of nitrate and nitrite. HTRB-L1 is haloalkalitolerant, with a pH range for lithotrophic growth from 7.1 to 9.7 (optimum at 8.5) and a salt range from 0.6 to 1.5 M total Na+ (optimum at 0.6 M). Phylogenetic analysis showed that strain HTRB-L1 is a novel species within the genus Sulfurospirillum (Epsilonproteobacteria) for which a name Sulfurospirillum alkalitolerans is proposed.


Thiopaq bioreactor Sulfur-reducing Thiosulfate-reducing Alkalitolerant 



This work was supported by the RFBR Grant 13-04-00049 to DS, and by an Advanced ERC Grant to GM. We are grateful to Erik van Zessen for providing samples from the Thiopaq bioreactor.

Supplementary material

792_2013_538_MOESM1_ESM.pdf (140 kb)
Supplementary material 1 (PDF 139 kb)


  1. Gries-Romijn van Eck (1966) Physiological and chemical test for drinking water. NEN 1056, IY-2 Nederlandse Normalisatie Instituut RijswijkGoogle Scholar
  2. Hinsley AP, Berks BC (2002) Specificity of respiratory pathways involved in the reduction of sulfur compounds by Salmonella enterica. Microbiology 148:3631–3638PubMedGoogle Scholar
  3. Janssen AJH, Lettinga G, de Keizer A (1999) Removal of hydrogen sulfide from wastewater and waste gases by biological conversion to elemental sulfur. Colloidal and interfacial aspects of biologically produced sulfur particles. Colloids Surf A Physicochem Eng Asp 151:389–397Google Scholar
  4. Janssen AJH, Lens P, Stams AJM, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, van Zessen E, Luimes P, Buisman CJN (2009) Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci Tot Environ 407:1333–1343CrossRefGoogle Scholar
  5. Kodama Y, Ha LT, Watanabe K (2007) Sulfurospirillum cavolei sp. nov., a facultatively anaerobic sulfur-reducing bacterium isolated from an underground crude oil storage cavity. Int J Syst Evol Microbiol 57:827–831PubMedCrossRefGoogle Scholar
  6. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  7. Luijten MLGC, de Weert J, Smidt H, Boschker HTS, de Vos WM, Schraa G, Stams AJM (2003) Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene- respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int J Syst Evol Microbiol 53:787–793PubMedCrossRefGoogle Scholar
  8. Marmur J (1961) A procedure for isolation of DNA from microorganisms. J Mol Biol 3:208–214CrossRefGoogle Scholar
  9. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from microorganisms. J Mol Biol 5:109–118PubMedCrossRefGoogle Scholar
  10. Pfennig N, Lippert KD (1966) Über das Vitamin B12—Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256CrossRefGoogle Scholar
  11. Pikuta EV, Zhilina TN, Zavarzin GA, Kostrikina NA, Osipov GA, Rainey FA (1998) Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Microbiology (Moscow, English translation) 67:105–113Google Scholar
  12. Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB, Cleland D, Krader P (2003) Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332PubMedCrossRefGoogle Scholar
  13. Plugge CM (2005) Anoxic media design, preparation, and considerations. Methods Enzymol 397:3–16PubMedCrossRefGoogle Scholar
  14. Schäfer H, Muyzer G (2001) Denaturing gradient gel electrophoresis in marine microbial ecology. In: Paul JH (ed) Methods in microbiology. Academic, New York, pp 425–468Google Scholar
  15. Schumacher W, Kroneck PMH, Pfennig N (1992) Comparative systematic study on ‘Spirillum’ 5175, Campylobacter and Wolinella species. Description of ‘Spirillum’ 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch Microbiol 158:287–293CrossRefGoogle Scholar
  16. Simon J, Kroneck PMH (2013) Microbial sulfite respiration. Adv Microb Physiol 62:45–117Google Scholar
  17. Sorokin DY, Foti M, Tindall BJ, Muyzer G (2007) DeSulfurospirillum alkaliphilum gen. nov. sp. nov., a novel obligately anaerobic sulfur- and dissimilatory nitrate-reducing bacterium from a full-scale sulfide-removing bioreactor. Extremophiles 11:363–370PubMedCrossRefGoogle Scholar
  18. Sorokin DY, Kuenen JG, Muyzer G (2011a) The microbial sulfur cycle in soda lakes. Front Microbial Physiol 2, article 44Google Scholar
  19. Sorokin DY, Tourova TP, Detkova EN, Kolganova TV, Galinski EA, Muyzer G (2011b) Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles 15:391–401PubMedCrossRefGoogle Scholar
  20. Sorokin DY, Panteleeva AN, Muntyan MS, Muyzer G (2012) Thioalkalivibrio sulfidophilus sp. nov., a haloalkaliphilic sulfur-oxidizing gammaproteobacterium from alkaline habitats. Int J Syst Evol Microbiol 62:1884–1889Google Scholar
  21. Stolz JF, Ellis DJ, Switzer Blum J, Ahmann D, Lovley DR, Oremland RS (1999) Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ε-Proteobacteria. Int J Syst Bacteriol 49:1177–1180PubMedCrossRefGoogle Scholar
  22. Trüper HG, Schlegel HG (1964) Sulfur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells of Chromatium okenii. Antonie Van Leeuwenhoek 30:225–238CrossRefGoogle Scholar
  23. van de Peer Y, de Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570PubMedGoogle Scholar
  24. Weatherburn MV (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974CrossRefGoogle Scholar
  25. Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA, Kostrikina NA (1997) Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149PubMedCrossRefGoogle Scholar
  26. Zhilina TN, Zavarzina DG, Kuever J, Lysenko AM, Zavarzin GA (2005) Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. Int J Syst Evol Microbiol 55:1001–1006PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
  3. 3.Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations