Advertisement

Extremophiles

, Volume 17, Issue 3, pp 523–534 | Cite as

Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania

  • Cristian ComanEmail author
  • Bogdan Drugă
  • Adriana Hegedus
  • Cosmin Sicora
  • Nicolae Dragoş
Original Paper

Abstract

The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.

Keywords

Biodiversity Microbial mat Archaeal diversity Bacterial diversity Hot springs Community structure 

Notes

Acknowledgments

This work was partially supported by a Grant funded by the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-RU-PD-2011-3-0215 and partially by the POSCCE programme, project number 236/16.08.2010.

Supplementary material

792_2013_537_MOESM1_ESM.jpg (474 kb)
Supplementary material 1 (JPEG 473 kb)
792_2013_537_MOESM2_ESM.jpg (30 kb)
Supplementary material 2 (JPEG 29 kb)

References

  1. Abildgaard L, Nielsen MB, Kjeldsen KU, Ingvorsen K (2006) Desulfovibrio alkalitolerans sp. nov., a novel alkalitolerant, sulphate-reducing bacterium isolated from district heating water. Int J Syst Evol Microbiol 56(5):1019–1024PubMedCrossRefGoogle Scholar
  2. Albuquerque L, Rainey FA, Nobre MF, da Costa MS (2011) Schleiferia thermophila gen. nov., sp. nov., a slightly thermophilic bacterium of the phylum ‘Bacteroidetes’ and the proposal of Schleiferiaceae, fam. nov. Int J Syst Evol Microbiol 61(10):2450–2455PubMedCrossRefGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410PubMedGoogle Scholar
  4. Anders HJ, Kaetzke A, Kämpfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45(2):327–333PubMedCrossRefGoogle Scholar
  5. Baena S, Fardeau ML, Woo TH, Ollivier B, Labat M, Patel BK (1999) Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, ‘Selenomonas acidaminophila’ and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. Int J Syst Bacteriol 49:969–974PubMedCrossRefGoogle Scholar
  6. Bahl J, Lau MC, Smith GJ, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FK, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163PubMedCrossRefGoogle Scholar
  7. Baker GC, Gaffar S, Cowan DA, Suharto AR (2001) Bacterial community analysis of Indonesian hot springs. FEMS Microbiol Lett 200(1):103–109PubMedCrossRefGoogle Scholar
  8. Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455PubMedCrossRefGoogle Scholar
  9. Borsodi AK, Micsinai A, Kovács G, Tóth E, Schumann P, Kovács AL, Böddi B, Márialigeti K (2003) Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol 53(2):555–561PubMedCrossRefGoogle Scholar
  10. Bryanskaya AV, Namsaraev ZB, Kalashnikova OM, Barkhutova DD, Namsaraev BB, Gorlenko VM (2006) Biogeochemical processes in the algal–bacterial mats of the Urinskii alkaline hot spring. Microbiology 75:611–620CrossRefGoogle Scholar
  11. Cai M, Wang L, Cai H, Li Y, Tang YQ, Wu XL (2011) Rubrimonas shengliensis sp. nov. and Polymorphum gilvum gen. nov., sp. nov., novel members of Alphaproteobacteria from crude oil contaminated saline soil. Syst Appl Microbiol 34(5):321–327PubMedCrossRefGoogle Scholar
  12. Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DL (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315PubMedCrossRefGoogle Scholar
  13. Chen TL, Chou YJ, Che WM, Arun B, Young CC (2006) Tepidimonas taiwanensis sp. nov., a novel alkaline-protease-producing bacterium isolated from a hot spring. Extremophiles 10(1):35–40PubMedCrossRefGoogle Scholar
  14. Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28(3):367–393CrossRefGoogle Scholar
  15. Cohen Y (1989) Photosynthesis in cyanobacterial mats and its relation to the sulful cycle: a model for microbial sulfur interactions. In: Cohen Y, Rosenberg E (eds) Microbial mats: physiiological ecology of benthic microbial communities. American Society for Microbiology, Washington, pp 22–36Google Scholar
  16. Coman C, Bica A, Drugă B, Barbu-Tudoran L, Dragoş N (2011) Methodological constraints in the molecular biodiversity study of a thermomineral spring cyanobacterial mat: a case study. Anton Leeuw Int J G 92:271–281CrossRefGoogle Scholar
  17. Coman C, Bica A, Drugă B, Barbu-Tudoran L, Dragoş N (2012) A microbial mat developed around a man-made geothermal spring from Romania: structure and cyanobacterial composition. In: Noffke N, Chafetz H (eds) Microbial mats in siliciclastic depositional systems through time, SEPM (Society for Sedimentary Geology) special publication 101, pp 47–53Google Scholar
  18. Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP (2009) Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13(3):447–459PubMedCrossRefGoogle Scholar
  19. Da Costa MS, Rainey FA, Nobre MF (2006) The genus Thermus and relatives. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackenbrandt E (eds) The prokaryotes: a handbook on the biology of microorganisms. Springer, New York, pp 797–812Google Scholar
  20. De Philippis R, Margheri MC, Materassi R, Vincenzini M (1998) Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Appl Environ Microbiol 64(3):1130–1132PubMedGoogle Scholar
  21. Debnath M, Mandal NC, Ray S (2009) The Study of cyanobacterial flora from geothermal springs of Bakreswar, West Bengal, India. Algae 24(4):185–193CrossRefGoogle Scholar
  22. Donkor V, Hader DP (1991) Effects of solar and ultraviolet radiation on motility, photomovement and pigmentation in filamentous, gliding cyanobacteria. FEMS Microbiol Lett 86:159–168CrossRefGoogle Scholar
  23. Donkor V, Amewowor D, Hader DP (1993) Effects of tropical solar radiation on the motility of filamentous cyanobacteria. FEMS Microbiol Ecol 12:143–148CrossRefGoogle Scholar
  24. Dridi B, Fardeau M-L, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen nov, sp nov, a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62(8):1902–1907PubMedCrossRefGoogle Scholar
  25. Ţenu A, Constantinescu T, Davidescu F, Nuti S, Noto P, Squarci P (1981) Research on the thermal waters of the Western Plain of Romania. Geothermics 10(1):1–28CrossRefGoogle Scholar
  26. Foss S, Harder J (1998) Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) nitrate. Syst Appl Microbiol 21(3):365–373PubMedCrossRefGoogle Scholar
  27. França L, Rainey FA, Nobre MF, da Costa MS (2006) Tepidicella xavieri gen. nov., sp. nov., a betaproteobacterium isolated from a hot spring runoff. Int J Syst Evol Microbiol 56(4):907–912PubMedCrossRefGoogle Scholar
  28. Grégoire P, Bohli M, Cayol JL, Joseph M, Guasco S, Dubourg K, Cambar J, Michotey V, Bonin P, Fardeau ML, Ollivier B (2011a) Caldilinea tarbellica sp. nov., a filamentous, thermophilic, anaerobic bacterium isolated from a deep hot aquifer in the Aquitaine Basin. Int J Syst Evol Microbiol 61(6):1436–1441PubMedCrossRefGoogle Scholar
  29. Grégoire P, Fardeau ML, Joseph M, Guasco S, Hamaide F, Biasutti S, Michotey V, Bonin P, Ollivier B (2011b) Isolation and characterization of Thermanaerothrix daxensis gen nov, sp nov, a thermophilic anaerobic bacterium pertaining to the phylum “Chloroflexi”, isolated from a deep hot aquifer in the Aquitaine Basin. Syst Appl Microbiol 34(7):494–497PubMedCrossRefGoogle Scholar
  30. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  31. Hayashi NR, Peeraporpisal Y, Nishihara H, Ishii M, Igrashi Y, Kodama T (1994) Isolation and cultivation of thermophilic cyanobacteria from hot-springs of northern Thailand. J Ferment Bioeng 78(2):179–181CrossRefGoogle Scholar
  32. Hreggvidsson GO, Skirnisdottir S, Smit B, Hjorleifsdottir S, Marteinsson VT, Petursdottir S, Kristjansson JK (2006) Polyphasic analysis of Thermus isolates from geothermal areas in Iceland. Extremophiles 10(6):563–575PubMedCrossRefGoogle Scholar
  33. Huang Q, Dong CZ, Dong RM, Jiang H, Wang S, Wang G, Fang B, Ding X, Niu L, Li X, Zhang C, Dong H (2011) Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles 15:549–563PubMedCrossRefGoogle Scholar
  34. Jaspers E, Overmann J (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in Bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839PubMedCrossRefGoogle Scholar
  35. Jiang B, Parshina S, van Doesburg W, Stams A (2005) Methanomethylovorans thermophila sp nov, a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int J Syst Evol Microbiol 55(6):2465–2470PubMedCrossRefGoogle Scholar
  36. Jones B, Renaut RW (2007) Selective mineralization of microbes in Fe-rich precipitate (jarosite, hydrous ferric oxides) from acid hot springs in the Waiotapu geothermal area, North Island, New Zealand. Sed Geol 194:77–98CrossRefGoogle Scholar
  37. Jørgensen BB, Nelson CN (1988) Bacterial zonation, photosynthesis, and spectral light distrbution in hot spring mirobial mats of Iceland. Microbial Ecol 16:133–147CrossRefGoogle Scholar
  38. Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, Chistoserdova L (2006) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56(11):2517–2522PubMedCrossRefGoogle Scholar
  39. Kanokratana P, Chanapan S, Pootanakit K, Eurwilaichitr L (2004) Diversity and abundance of bacteria and archaea in the Bor Khlueng hot spring in Thailand. J Basic Microbiol 44(6):430–444PubMedCrossRefGoogle Scholar
  40. Kasting JK, Howard MT (2006) Atmospheric composition and climate on the early Earth. Philos T R SOC B 361:1733–1742CrossRefGoogle Scholar
  41. Kastovsky J, Johansen JR (2008) Mastigocladus laminosus (Stigonematales, Cyanobacteria): phylogenetic relationship of strains from thermal springs to soil-inhabiting genera of the order and taxonomic implications for the genus. Phycologia 47(3):307–320CrossRefGoogle Scholar
  42. Kemp PF, Aller JY (2004) Estimating prokaryotic diversity: when are 16S rDNA libraries large enough? Limnol Oceanogr Methods 2:114–125CrossRefGoogle Scholar
  43. Kendall MM, Liu Y, Boone DR (2006) Methanococcus aeolicus sp nov, a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int J Syst Evol Microbiol 56(7):1525–1529PubMedCrossRefGoogle Scholar
  44. Khavarpour M, Najafpour GD, Ghoreyshi A–A, Jahanshahi M, Bambai B (2011) Enhanced Fe2+ oxidation by mixed culture originated from hot spring: application of response surface method. African J Biotech 10(19):3769–3783Google Scholar
  45. Kielak A, Rodrigues JLM, Kuramae EE, Chain PSG, van Veen JA, Kowalchuk GA (2010) Phylogenetic and metagenomic analysis of Verrucomicrobia in former agricultural grassland soil. FEMS Microbiol Ecol 71:23–33PubMedCrossRefGoogle Scholar
  46. Klatt CG, Wood JM, Rusch DB, Bateson MM, Hamamura N, Heidelberg JF, Grossman AR, Bhaya D, Cohan FM, Kühl M, Bryant DA, Ward DM (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J 5(8):1262–1278PubMedCrossRefGoogle Scholar
  47. Konhauser K (2007) Introduction to Geomicrobiology, Blackwell Publishing, OxfordGoogle Scholar
  48. Lacap DC, Smith GJ, Warren-Rhodes K, Pointing SB (2005) Community structure of free-floating filamentous cyanobacterial mats from the Wonder Lake geothermal springs in the Philippines. Can J Microbiol 51(7):583–589PubMedCrossRefGoogle Scholar
  49. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, pp 115–175Google Scholar
  50. Langmuir D (1997) Aqueous Environmental Geochemistry. Prentice Hall, Upper Saddle RiverGoogle Scholar
  51. Lau MCY, Pointing SB (2009) Vertical partitioning and expression of primary metabolic genes in a thermophilic microbial mat. Extremophiles 13(3):533–540PubMedCrossRefGoogle Scholar
  52. Lau MCY, Aitchison JC, Pointing SB (2009) Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet. Extremophiles 13(1):139–149PubMedCrossRefGoogle Scholar
  53. Mackenzie R, Pedrós-Alió C, Díez B (2013) Bacterial composition of microbial mats in hot springs in Northern Patagonia: variations with seasons and temperature. Extremophiles 17(1):123–136PubMedCrossRefGoogle Scholar
  54. Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E, Sly LI (1993) Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 43(1):135–142PubMedCrossRefGoogle Scholar
  55. Madigan MT (2003) Anoxygenic phototrophic bacteria from extreme environments. Photosynth Res 76:157–171PubMedCrossRefGoogle Scholar
  56. McGregor GB, Rasmussen JP (2008) Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation. FEMS Microbiol Ecol 63(1):23–35PubMedCrossRefGoogle Scholar
  57. Mechichi T, Stackebrandt E, Gad’on N, Fuchs G (2002) Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 178(1):26–35PubMedCrossRefGoogle Scholar
  58. Miller SR, Castenholz RW, Pedersen D (2007) Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol 73:4751–4759PubMedCrossRefGoogle Scholar
  59. Miseta R, Palatinszky M, Makk J, Marialigeti K, Borsodi AK (2012) Phylogenetic diversity of bacterial communities associated with sulfurous karstic well waters of a hungarian spa. Geomicrobiol J 29(2):101–113CrossRefGoogle Scholar
  60. Moro I, Rascio N, La Rocca N, Sciuto K, Albertano P, Bruno L, Andreoli C (2010) Polyphasic characterization of a thermo-tolerant filamentous cyanobacterium isolated from the Euganean thermal muds (Padua, Italy). Eur J Phycol 45(2):143–154CrossRefGoogle Scholar
  61. Namsaraev ZB, Gorlenko VM, Namsaraev BB, Buryukhaev SP, Yurkov VV (2003) The structure and biogeochemical activity of the phototrophic communities from the Bol’sherechenskii alkaline hot spring. Microbiology 72:193–202CrossRefGoogle Scholar
  62. Nobre MF, da Costa MS (2001) Genus II Meiothermus. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 414–420Google Scholar
  63. Noffke N, Beukes N, Bower D, Hazen RM, Swift DJP (2008) An actualistic perspective into Archean worlds-(cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup. South Africa. Geobiol 6:5–20Google Scholar
  64. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedGoogle Scholar
  65. Osanjo GO, Muthike EW, Tsuma L, Okoth MW, Bulimo WD, Lünsdorf H, Abraham W-R, Dion M, Timmis KN, Golyshin PN, Mulaa FJ (2009) A salt lake extremophile, Paracoccus bogoriensis sp nov, efficiently produces xanthophyll carotenoids. Afr J Microbiol Res 3(8):426–433Google Scholar
  66. Pagaling E, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2012) Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China. Extremophiles 16:607–618PubMedCrossRefGoogle Scholar
  67. Pentecost A (1995) The Quaternary travertine deposits of Europe and Asia Minor Quaternary. Sci Rev 14:1005–1028CrossRefGoogle Scholar
  68. Pentecost A, Coletta P (2004) A note on the travertines of Suio, Roccamonfina, with reference to their microbial communities and geochemical origins. Geol Rom 37:109–112Google Scholar
  69. Pepe-Ranney C, Berelson WM, Corsetti FA, Treants M, Spear JR (2012) Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park. Environ Microbiol 14(5):1182–1197PubMedCrossRefGoogle Scholar
  70. Pires AL, Albuquerque L, Tiago I, Nobre MF, Empadinhas N, Veríssimo A, da Costa MS (2005) Meiothermus timidus sp. nov., a new slightly thermophilic yellow-pigmented species. FEMS Microbiol Lett 245(1):39–45PubMedCrossRefGoogle Scholar
  71. Porat I, Vishnivetskaya TA, Mosher JJ, Brandt CC, Yang ZK, Brooks SC, Liang L, Drake MM, Podar M, Brown SD, Palumbo AV (2010) Characterization of archaeal community in contaminated and uncontaminated surface stream sediments. Microb Ecol 60(4):784–795PubMedCrossRefGoogle Scholar
  72. Portillo MC, Sririn V, Kanoksilapatham W, Gonzalez JM (2009) Differential microbial communities in hot spring mats from Western Thailand. Extremophiles 13:321–331PubMedCrossRefGoogle Scholar
  73. Posada D (2003) jModelTest: phylogenetic model averaging. Mol Evol Biol 25:1253–1256CrossRefGoogle Scholar
  74. Radway JC, Weissman J, Wilde EW, Benemann JR (1992) Exposure of Fischerella [Mastigocladus] to high and low temperature extremes: strain evaluation for a thermal mitigation process. J Appl Phycol 4:67–77CrossRefGoogle Scholar
  75. Roeselers G, Norris TB, Castenholz RW, Rysgaard S, Glud RN, Kühl M, Muyzer G (2007) Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Environ Microbiol 9(1):26–38PubMedCrossRefGoogle Scholar
  76. Rogers KL, Amend JP (2006) Energetics of potential heterotrophic metabolisms in the marine hydrothermal system of Vulcano Island, Italy. Geochim Cosmochim Ac 70:6180–6200CrossRefGoogle Scholar
  77. Sangwan P, Chen X, Hugenholtz P, Janssen PH (2004) Chtoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl Environ Microbiol 70:5857–5881CrossRefGoogle Scholar
  78. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71(3):1501–1506Google Scholar
  79. Schopf JW (2002) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Their diversity in time and space. Kluwer, New York, pp 1–17Google Scholar
  80. Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y (2003) Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53(6):1843–1851PubMedCrossRefGoogle Scholar
  81. Singha TK (2012) Microbial extracellular polymeric substances: production, isolation and applications. IOSR J Pharm 2(2):271–281Google Scholar
  82. Sompong U, Anuntalabhochai S, Cutler RW, Castenholz RW, Peerapornpisal Y (2008) Morphological and phylogenetic diversity of cyanobacterial populations in six hot springs of Thailand. Science Asia 34:153–162CrossRefGoogle Scholar
  83. Song Z, Jiang H, Zhi X, Zhang C, Dong H, Li W (2009) Actinobacterial diversity in hot springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiol J 26:256–263CrossRefGoogle Scholar
  84. Stolyar S, He Q, Joachimiak MP, He Z, Yang ZK, Borglin SE, Joyner DC, Huang K, Alm E, Hazen TC, Zhou J, Wall JD, Arkin AP, Stahl DA (2007) Response of Desulfovibrio vulgaris to alkaline stres. J Bacteriol 189(24):8944–8952PubMedCrossRefGoogle Scholar
  85. Tamulonis C, Postma M, Kaandorp J (2011) Modeling filamentous cyanobacteria reveals the advantages of long and fast trichomes for optimizing light exposure. PLoS ONE 6(7):e22084PubMedCrossRefGoogle Scholar
  86. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony. Methods Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  87. Tobler DJ, Benning LG (2011) Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects. Extremophiles 15:473–485PubMedCrossRefGoogle Scholar
  88. Wagner C, Mau M, Schlomann M, Heinicke J, Koch U (2007) Characterization of the bacterial flora in mineral waters in upstreaming fluids of deep igneous rock aquifers. J Geophys Res 112:G01003CrossRefGoogle Scholar
  89. Yang GQ, Zhang J, Kwon SW, Zhou SG, Han LC, Chen M, Ma C, Zhuang L (2012) Thauera humireducens sp. nov., a humus-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63(3):873–878Google Scholar
  90. Zhang LH, Hedlund BP, Meng J (2011) Diversity of Archaea in terrestrial hot springs and role of ammonia oxidation. In: De Brujin FJ (ed) Handbook of molecular microbial ecology II: metagenomics in different habitats. Wiley, Canada, pp 381–402CrossRefGoogle Scholar
  91. Ziegler S, Waidner B, Itoh T, Schumann P, Spring S, Gescher J (2012) Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.042986-0

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Cristian Coman
    • 1
    Email author
  • Bogdan Drugă
    • 1
  • Adriana Hegedus
    • 1
  • Cosmin Sicora
    • 1
    • 3
  • Nicolae Dragoş
    • 1
    • 2
  1. 1.NIRDBS Romania, Institute of Biological ResearchCluj-NapocaRomania
  2. 2.Department of BiologyBabeş-Bolyai UniversityCluj-NapocaRomania
  3. 3.Biological Research CenterJibouRomania

Personalised recommendations