, Volume 17, Issue 3, pp 499–504 | Cite as

Haloferax chudinovii sp. nov., a halophilic archaeon from Permian potassium salt deposits

  • Alexander I. Saralov
  • Roman V. Baslerov
  • Boris B. Kuznetsov
Original Paper


Three pigmented strains of halophilic archaea (RS75, RS77, RS79) were isolated from the monoliths of mottled sylvinite from the Verkhnekamsk salt deposit (Solikamsk, Russia). The cells were nonmotile, gram-negative, pleomorphic, disk-shaped or ovoid, 0.8–1.0 × 1.5–2.5 μm. The organism was a chemoorganotrophic obligate aerobe producing catalase and oxidase. A number of carbohydrates and carboxylic acids were used as growth substrates. Growth occurred in the presence of 7–27 % NaCl (with the optimum at 15–18 %), 0.02–20 % KCl (0.2–1 %), 0.2–16 % MgCl2 (2–3 %), in the temperature range from 23 to 51 °C (40–45 °C), and pH 5.5–8.0 (6.8–7.0). The membranes contained carotenoids of the bacterioruberin series. Phosphatidylglyceromethylphosphate (PGP-Me), phosphatidylglycerol (PG), sulfated diglycosyl diether (S-DGD-1) predominated among the polar lipids. The DNA G + C content was 64.0–65.0 mol %. Phylogenetic analysis of the 16S rRNA gene sequences showed high similarity of the new strains to Haloferax species: H. denitrificans (99.2 %) and H. volcanii (99.1 %), H. larsenii (96.9 %) and H. elongans (96.6 %). DNA–DNA hybridization revealed 93–95 % similarity between strain RS75 and strains RS77 and RS79; the similarity levels between strain RS75 and the type strains of Haloferax denitrificans VKM B-1754T and Halobacterium salinarum VKM B-1769T were 50 and 10 %, respectively. According to its phenotypic and genotypic characteristics, the organism was classified as a member of the genus Haloferax, forming a new species with the proposed name Haloferax chudinovii sp. nov. type strain is RS75T (=VKPM B-11279T).


Haloarchaea Haloferax Haloferax chudinovii Permian 



This work was supported by the program no. 22 (Molecular and Cell Biology) of the Presidium of the Russian Academy of Sciences, project no. 01200963684, and by the state contract of the Russian Ministry of Education and Science no. 16.552.11.7035.

Supplementary material

792_2013_534_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1083 kb)
792_2013_534_MOESM2_ESM.doc (139 kb)
Supplementary material 2 (DOC 139 kb)


  1. De Ley J, Caffon H, Reinaerts A (1970) The quantitative measurements of DNA hybridization from renaturation rates. Eur J Biochem 12:133–140PubMedCrossRefGoogle Scholar
  2. Denner EBM, McGenity TJ, Busse H-J, Wanner G, Grant WD, Stan-Lotter H (1994) Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int J Syst Bacteriol 44:774–780CrossRefGoogle Scholar
  3. Enache M, Itoh T, Kamekura M, Teodosiu G, Dumitru L (2007a) Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake. Int J Syst Evol Microbiol 57:393–397PubMedCrossRefGoogle Scholar
  4. Enache M, Itoh T, Fukushima T, Usami R, Dumitru L, Kamekura M (2007b) Phylogenetic relationships within the family Halabacteriaceae inferred from rpoB’ gene and protein sequences. Int J Syst Evol Microbiol 57:2289–2295PubMedCrossRefGoogle Scholar
  5. Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436PubMedCrossRefGoogle Scholar
  6. Gemmell RT, McGenity TJ, Grant WD (1998) Use of molecular techniques to investigate possible long-term dormancy of halobacteria in ancient halite deposits. Ancient Biomolecules 2:125–133Google Scholar
  7. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse H-J, Stan-Lotter H (2004) Halabacterium noricense sp. nov., an archaeal isolate from a bore core of alpine Permian salt deposit, classification of Halabacterium sp. NRC–1 as a stain of H. salinarium and emended description of H. salinarium. Extremophiles 8:431–439PubMedCrossRefGoogle Scholar
  8. Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99CrossRefGoogle Scholar
  9. Kolganova TV, Kuznetsov BB, Turova TP (2002) Designing and testing oligonucleotide primers for amplification and sequencing of archaeal 16S rRNA genes. Mikrobiology (Moscow, English translation) 71:243–246Google Scholar
  10. McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits (mini-review). Environ Microbiol 2:243–250PubMedCrossRefGoogle Scholar
  11. Norton CF, McGenity TJ, Grant WD (1993) Archaeal halophiles (halobacteria) from two British salt mines. J Gen Microbiol 139:1077–1081Google Scholar
  12. Oren A (2006) The order Halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The procaryotes, vol 3. Springer, New York, pp 113–164CrossRefGoogle Scholar
  13. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238CrossRefGoogle Scholar
  14. Saralov AI (2010) Viable ancient microorganisms of Verkhnekamsk potassium salt deposit: biodiversity and phylogeny, paleofactors and geochemical processes. In: Proceedings of Minsk VII International Scientific Conference. Minsk (In Russian): IP Loginov Printing Establishment, vol 1, pp 69–71Google Scholar
  15. Saralov AI, Kuznetsov BB, Reutskhih EM, Baslerov RV, Panteleeva AN, Souzina NE (2012a) Arhodomonas recens sp. nov., a halophilic alkane-utilizing hydrogen-oxidizing bacterium from the brines of flotation enrichment of potassium minerals. Mikrobiology (Moscow, English translation) 81:582–588Google Scholar
  16. Saralov AI, Baslerov RV, Reutskhih EM, Kuznetsov BB (2012b) Halarhaeum solikamskense sp. nov., a thermotolerant neutrophilic haloarchaeon from the foamy products of flotation enrichment of potassium minerals. Mikrobiology (Moscow, English translation) 81:589–595Google Scholar
  17. Schubert BA, Lowenstein TK, Timofeeff MN, Parker MA (2010) Halophilic Archaea cultured from ancient halite, Death Valley, California. Environ Microbiol 12:440–454PubMedCrossRefGoogle Scholar
  18. Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse H-J, Radax C, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permo-Triassic alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814PubMedCrossRefGoogle Scholar
  19. Takaichi S (2000) Characterization of carotenes in a combination of a C18 HPLC column with isocratic elution and absorption spectra with photodiode—array detector. Photosynthesis Res 65:93–99CrossRefGoogle Scholar
  20. Tindall BJ, Tomlinson GA, Hochstein LI (1989) Transfer of Halobacterium denitrificans (Tomlinson, Jahnke, and Hochstein) to the genus Haloferax as Haloferax denitrificans comb. nov. Int J Syst Bacteriol 39:359–360PubMedCrossRefGoogle Scholar
  21. Tomlinson GA, Jahnke LL, Hochstein LI (1986) Halobacterium denitrificans. sp. nov., an extremely halophilic denitrifying bacterium. Int J Syst Bacteriol 36:66–70PubMedCrossRefGoogle Scholar
  22. Upasani VN, Desai SG, Moldoveanu N, Kates M (1994) Lipids of extremely halophilic archaebacteria from saline environments in India: a novel glycolipid in Natronobacterium strains. Microbiology 140:1959–1966PubMedCrossRefGoogle Scholar
  23. Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900PubMedCrossRefGoogle Scholar
  24. Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD, Kamekura M (2002) Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452PubMedCrossRefGoogle Scholar
  25. Vreeland RH, Jones J, Monson A, Rosenzweig WD, Lowenstein TK, Timofeeff M, Satterfield C, Cho BC, Park JS, Wallace A, Grant WD (2007) Isolation of live Cretaceous (121–112 million years old) halophilic Archaea from primary salt crystals. Geomicrobiol J 24:275–282CrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Alexander I. Saralov
    • 1
  • Roman V. Baslerov
    • 2
  • Boris B. Kuznetsov
    • 2
  1. 1.Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of SciencesPermRussia
  2. 2.Center Bioengineering, Russian Academy of SciencesMoscowRussia

Personalised recommendations