, Volume 17, Issue 3, pp 391–403

Next-generation sequencing-based transcriptome profiling analysis of Pohlia nutans reveals insight into the stress-relevant genes in Antarctic moss

  • Shenghao Liu
  • Nengfei Wang
  • Pengying Zhang
  • Bailin Cong
  • Xuezheng Lin
  • Shouqiang Wang
  • Guangmin Xia
  • Xiaohang Huang
Original Paper


Genome-wide characterization of the Pohlia nutans transcriptome is essential for clarifying the role of stress-relevant genes in Antarctic moss adapting to the extreme polar environment. High-throughput Illumina sequencing was used to analyze the gene expression profile of P. nutans after cold treatment. A total of 93,488 unigenes, with an average length of 405 bp, were obtained. Gene annotation showed that 16,781 unigenes had significant similarity to known functional protein-coding genes, most of which were annotated using the GO, KOG and KEGG pathway databases. Global profiling of the differentially expressed genes revealed that 3,796 unigenes were significantly upregulated after cold treatment, while 1,405 unigenes were significantly downregulated. In addition, 816 receptor-like kinases and 1,309 transcription factors were identified from P. nutans. This overall survey of transcripts and stress-relevant genes can contribute to understanding the stress-resistance mechanism of Antarctic moss and will accelerate the practical exploitation of the genetic resources for this organism.


Mosses Transcriptome Gene expression profiling High-throughput RNA sequencing Cold treatment 

Supplementary material

792_2013_528_MOESM1_ESM.doc (50 kb)
Supplementary Table 1 (DOC 50 kb)
792_2013_528_MOESM2_ESM.doc (50 kb)
Supplementary Table 2 (DOC 50 kb)
792_2013_528_MOESM3_ESM.ppt (478 kb)
Supplementary material 3 (PPT 478 kb)


  1. Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thévenot P, Lemoine R, Atanassova R, Laloi M (2010) The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling. BMC Plant Biol 10:245PubMedCrossRefGoogle Scholar
  2. Bhyan SB, Minami A, Kaneko Y, Suzuki S, Arakawa K, Sakata Y, Takezawa D (2012) Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling. J Plant Physiol 169(2):137–145PubMedCrossRefGoogle Scholar
  3. Blow N (2009) Transcriptomics: the digital generation. Nature 458:239–242PubMedCrossRefGoogle Scholar
  4. Bokhorst S, Huiskes A, Convey P, Aerts R (2007) The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic. BMC Ecol 7:15PubMedCrossRefGoogle Scholar
  5. Chen ZZ, Xue CH, Zhu S, Zhou FF, Ling XB, Liu GP, Chen LB (2005) GoPipe: streamlined gene ontology annotation for batch anonymous sequences with statistics. Prog Biochem Biophys 32:187–191Google Scholar
  6. Convey P, Stevens MI (2007) Antarctic Biodiversity. Science 317:1877–1878PubMedCrossRefGoogle Scholar
  7. Gish LA, Clark SE (2011) The RLK/Pelle family of kinases. Plant J 66:117–127PubMedCrossRefGoogle Scholar
  8. Hsiao YY, Chen YW, Huang SC, Pan ZJ, Fu CH, Chen WH, Tsai WC, Chen HH (2011) Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids. BMC Genomics 12:360PubMedCrossRefGoogle Scholar
  9. Huang W, Marth G (2008) EagleView: a genome assembly viewer for nextgeneration sequencing technologies. Genome Res 18:1538–1543PubMedCrossRefGoogle Scholar
  10. Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118PubMedCrossRefGoogle Scholar
  11. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:355–360CrossRefGoogle Scholar
  12. Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150:12–26PubMedCrossRefGoogle Scholar
  13. Li XG, Wu HX, Southerton SG (2011) Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics. BMC Genomics 12:480PubMedCrossRefGoogle Scholar
  14. Libault M, Joshi T, Benedito VA, Xu D, Udvardi MK, Stacey G (2009) Legume transcription factor genes: what makes legumes so special? Plant Physiol 151:991–1001PubMedCrossRefGoogle Scholar
  15. Liu SH, Lee HS, Kang PS, Huang XH, Yim JH, Lee HK, Kim Il-C (2010) Complementary DNA library construction and expressed sequence tag analysis of an Arctic moss, Aulacomnium turgidum. Polar Biol 33:617–626CrossRefGoogle Scholar
  16. Lovelock CE, Jackson AE, Melick DR, Seppelt RD (1995) Reversible photoinhibition in Antarctic moss during freezing and thawing. Plant Physiol 109:955–961PubMedGoogle Scholar
  17. Minami A, Nagao M, Ikegami K, Koshiba T, Arakawa K, Fujikawa S, Takezawa D (2005) Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta 220(3):414–423PubMedCrossRefGoogle Scholar
  18. Mizutani M, Sato F (2011) Unusual P450 reactions in plant secondary metabolism. Arch Biochem Biophys 507(1):194–203PubMedCrossRefGoogle Scholar
  19. Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NP (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252PubMedCrossRefGoogle Scholar
  20. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628PubMedCrossRefGoogle Scholar
  21. Pearce DA (2008) Climate change and the microbiology of the Antarctic Peninsula region. Sci Prog 91:203–217PubMedCrossRefGoogle Scholar
  22. Peck LS, Clark MS, Clarke A et al (2005) Genomics: applications to Antarctic ecosystems. Polar Biol 28:351–365CrossRefGoogle Scholar
  23. Qi XH, Xu XW, Lin XJ, Zhang WJ, Chen XH (2012) Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics 99:160–168PubMedCrossRefGoogle Scholar
  24. Ramel F, Sulmon C, Gouesbet G, Couée I (2009) Natural variation reveals relationships between pre-stress carbohydrate nutritional status and subsequent responses to xenobiotic and oxidative stress in Arabidopsis thaliana. Ann Bot 104(7):1323–1337PubMedCrossRefGoogle Scholar
  25. Reina-Bueno M, Argandoña M, Salvador M, Rodríguez-Moya J, Iglesias-Guerra F et al (2012) Role of trehalose in salinity and temperature tolerance in the model halophilic bacterium Chromohalobacter salexigens. PLoS ONE 7(3):e33587PubMedCrossRefGoogle Scholar
  26. Rensing SA, Lang D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69PubMedCrossRefGoogle Scholar
  27. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277PubMedCrossRefGoogle Scholar
  28. Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649PubMedCrossRefGoogle Scholar
  29. Rosenkranz R, Borodina T, Lehrach H, Himmelbauer H (2008) Characterizing the mouse ES cell transcriptome with Illumina sequencing. Genomics 92:187–194PubMedCrossRefGoogle Scholar
  30. Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092PubMedCrossRefGoogle Scholar
  31. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18PubMedCrossRefGoogle Scholar
  32. Skotnicki ML, Ninham JA, Selkirk PM (2000) Genetic diversity, mutagenesis and dispersal of Antarctic mosses—a review of progress with molecular studies. Antarct Sci 12:363–373CrossRefGoogle Scholar
  33. Skotnicki ML, Mackenzie AM, Clements MA, Selkirk PM (2005) DNA sequencing and genetic diversity of the 18S–26S nuclear ribosomal internal transcribed spacers (ITS) in nine Antarctic moss species. Antarctic Sci 17:377–384CrossRefGoogle Scholar
  34. Sun MM, Li LH, Xie H, Ma RC, He YK (2007) Differentially expressed genes under cold acclimation in Physcomitrella patens. J Biochem Mol Biol 40(6):986–1001PubMedCrossRefGoogle Scholar
  35. Tibbett M, Sanders F, Cairney J (2002) Low-temperature-induced changes in trehalose, mannitol and arabitol associated with enhanced tolerance to freezing in ectomycorrhizal basidiomycetes (Hebeloma spp.). Mycorrhiza 12(5):249–255PubMedCrossRefGoogle Scholar
  36. Wang X, Yang P, Zhang X, Xu Y, Kuang T, Shen S, He Y (2009) Proteomic analysis of the cold stress response in the moss, Physcomitrella patens. Proteomics 9(19):4529–4538PubMedCrossRefGoogle Scholar
  37. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010a) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138PubMedCrossRefGoogle Scholar
  38. Wang L, Li PH, Brutnell TP (2010b) Exploring plant transcriptomes using ultra high-throughput sequencing. Brief Funct Genomics 9:118–128PubMedCrossRefGoogle Scholar
  39. Wei WL, Qi XQ, Wang LH, Zhang YX, Hua W, Li DH, Lv HX, Zhang XR (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12:451PubMedCrossRefGoogle Scholar
  40. Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121PubMedCrossRefGoogle Scholar
  41. Xiang LX, He D, Dong WR, Zhang YW, Shao JZ (2010) Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune relevant genes in marine fish. BMC Genomics 11:472PubMedCrossRefGoogle Scholar
  42. Xiao L, Wang H, Wan P, Kuang T, He Y (2011) Genome-wide transcriptome analysis of gametophyte development in Physcomitrella patens. BMC Plant Biol 11:177PubMedCrossRefGoogle Scholar
  43. Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW (2010) A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem 285(10):7119–7126PubMedCrossRefGoogle Scholar
  44. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829PubMedCrossRefGoogle Scholar
  45. Zhang H, Jin JP, Tang L, Zhao Y, Gu XC, Gao G, Luo JC (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–D1117PubMedCrossRefGoogle Scholar
  46. Zhou MQ, Shen C, Wu LH, Tang KX, Lin J (2011) CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol 31(2):186–192PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Shenghao Liu
    • 1
    • 2
  • Nengfei Wang
    • 1
  • Pengying Zhang
    • 3
  • Bailin Cong
    • 1
  • Xuezheng Lin
    • 1
  • Shouqiang Wang
    • 1
  • Guangmin Xia
    • 2
  • Xiaohang Huang
    • 1
  1. 1.Key Laboratory of Marine Bioactive Substance, The First Institute of OceanographyState Oceanic AdministrationQingdaoPeople’s Republic of China
  2. 2.School of Life ScienceShandong UniversityJinanPeople’s Republic of China
  3. 3.National Glycoengineering Research CenterShandong UniversityJinanPeople’s Republic of China

Personalised recommendations